
Algorithmic Approaches for Object Tracking and Facial Detection Using Drones

Kareem Shahatta, Peter Savarese, Gina Egitto, Jongwook Kim
West Chester University

{ks1000662, ps980816, ge936577, jkim2}@wcupa.edu

ABSTRACT
Drones are unmanned aerial vehicles that have a variety of
uses in many fields such as package delivery and search op-
erations. Tello is a small, programmable drone designed for
educational purposes. We developed algorithms using DJI
Tello Py, an open-source Application Programming Interface,
to command the movements of Tello for tracking a target ob-
ject (i.e., human). Our algorithms utilize digital image pro-
cessing techniques on Tello’s live video stream to optimize
the number of movements Tello needs to reach its target. This
paper explains our approaches to implement object-tracking
and facial detection for Tello, discusses lessons we learned,
and highlights improvements for future work.

1 Introduction

From military use to video recording, drones are a versatile
asset for everyone. Drones can be controlled either directly
with a remote/app or programmed for a specific purpose. As
drones have become smaller, less expensive in price, and eas-
ily programmable with computer programming languages,
it has opened the door to rethink modes for object detec-
tion. Traditionally, detecting and tracking objects (e.g., hu-
man faces) have relied on static and stationary security cam-
eras such as doorbells and Closed-Circuit Television (CCTV).
This limitation requires multiple cameras for complete cover-
age of a premises. Drones easily address this issue since they
are not stationary, being capable of moving on all three axes
and performing yaw rotations.

We developed algorithms to detect human faces and control
Tello drones [1] to follow a target object (i.e., human). Our
algorithms for Tello allow us to use the included camera and
its live camera feed for non-stationary object tracking so that
we can move Tello toward a human by detecting a subject’s
face in the camera feed, calculating the required X, Y, and Z-
axis movements, and sending the required movements back
to Tello. Our algorithms prioritize how Tello moves and help
detect its own movement in the air by stimulating a velocity
for it. In return, Tello can reach its target using the minimum
number of movements. Our experiments show that with the
algorithms we developed, it is possible to have a drone fol-
low a subject with only a single camera feed under real-world
environments.

2 Approaches

2.1 Tello Drones

Tello is a drone made by Ryze Technology [1]. It is designed
for educational and testing purposes and can be controlled by
using the provided Application Programming Interface (API)
with any programming language (e.g., Python, Java, C/C++,
etc.) over a Wi-Fi network. This enables us to tailor Tello
to accept specific commands and control its movements and
flight patterns. Tello comes equipped with a 720p, 2592 x
1936 camera with an 82.6° Field of View [2]. Tello can fly
for up to 13 minutes of total continuous flight time. Its com-
pact size, measuring 98 x 92.5 x 41 mm and weight of 80 g,
allows for a small and nimble testing platform. Tello also has
an easy-to-remove 1.1 Ah battery that slides in and out for
minimal downtime. Figure 1 shows a Tello drone equipped
with propeller guards.

Figure 1: Tello Drone with Computer Mouse for Scale.

2.2 Drone API

We used DJI Tello Py [3], a Python API library, provided
by Escoté et al. [4] to control Tello. This library serves as a
way to utilize Ryze Technology’s Software Development Kit
(SDK) [5] for interacting with Tello drones. The DJI Tello Py
library provides interfaces to communicate with Tello via Wi-
Fi, using the User Datagram Protocol (UDP), a transport layer
protocol of the Internet protocol suite (i.e., TCP/IP), for wire-
less communication. The SDK comes with multiple built-in
commands for controlling Tello.



Listed below are commands provided by DJI Tello Py that we
utilized.

• Take off instructs Tello to start its propellers, take off
and maintain its position.

• Land instructs Tello to land and turn its propellers off.

• Up/Down/Left/Right (X) instructs Tello to move in a
specific direction relative to its current position, where
X denotes distance in centimeters.

• Forward/Back (X) instructs Tello to move forward or
back relative to its current position, where X denotes dis-
tance in centimeters.

• Streamon instructs Tello to turn its camera on and begin
a live stream of its camera feed over the Wi-Fi network.

Listed below are commands we created for controlling Tello.

• Camera Feed uses Tello’s Streamon command and
starts streaming Tello’s camera feed, opens a window
with a live camera stream preview, and begins detecting
by using our Detect command.

• Detect turns on face detection to detect faces from
Tello’s camera feed. Once a face is detected, our pro-
gram computes X, Y, and Z-axis movements and com-
mands Tello to move, resulting in the face being in the
center of the camera feed.

2.3 Object Recognition

We used the Open Computer Vision Library (OpenCV) [6]
and its digital image processing functions for object track-
ing and facial detection on Tello’s live video stream. We
used digital image processing techniques to highlight and
extract data from Tello’s video stream. This data includes
the number of humans and type of objects found. We ana-
lyzed Tello’s livestream video by breaking it down into image
frames, which are individual images extracted from a video,
and processed one at a time. OpenCV provides real-time im-
age processing functionality, allowing us to instantly analyze
each image frame on Tello’s live stream video as we capture
it. We used an algorithm called Haar Cascade classifier [7],
which is included in OpenCV, to perform face detection.

We chose the Haar Cascade algorithm because it is already
trained with a massive dataset of human faces and it allows
us to control its accuracy at detecting human faces. The algo-
rithm detects human faces by scanning and analyzing a sin-
gle image frame at a time. If the classifier successfully de-
tects a human face in an image frame, it draws a green square
around that face, starting from the top left corner of the face
(see Figure 2). From the green square we extract its dimen-
sions (width and height) to calculate how far the target is from
Tello, and its coordinates on X and Y-axes to determine where
the target is standing. The extracted data is then used to pro-
vide movement instructions for Tello.

Figure 2: Human Faces Detected Using Haar Cascade Algorithm.

3 Implementation

3.1 Multi Threaded Programming

We used multi-threaded programming techniques in Python
to communicate with Tello. A multi-threaded program
can perform multiple tasks in a program concurrently (i.e.,
one task per thread). Controlling Tello while receiving
image frames from it requires a minimum of two threads;
one for the camera feedback and another for the command
prompt. The camera feedback thread handles the digital
image processing and facial detection tasks. This thread
runs when Tello turns on, and it receives and displays
Tello’s live stream video in real time. We used the camera
feedback thread to monitor what Tello sees and analyze
how fast or accurately it can detect human faces. The
command prompt thread is used when we (users) send a
command to Tello. This thread takes the user’s command,
converts it into Tello instructions, and sends it to Tello
over Wi-Fi. Tello responds to the command prompt instruc-
tion with either a confirmation or an error if it fails to execute.

Major tasks of the command line thread includes:

• Checking the battery status
• Starting/Stopping the propeller
• Turning the object recognition on/off
• Sending manual movement commands

3.2 Initial Movement

There are two scenarios in which Tello has to juggle between
moving and handling facial detection. The first scenario is
when Tello turns on, its facial detection ability is turned off
until Tello becomes stable while hovering in the air. Facial
detection is then automatically turned on after ten seconds
of taking off. We did this to prevent Tello’s facial detection
ability from crashing when Tello slowly tries to balance itself
in the air. We found from our tests that ten seconds is the ideal
time for Tello to become steady in the air after taking off.



The second scenario is when Tello is about to begin mov-
ing. We turn facial detection off when Tello moves and turn
it back on when it hovers in the air. We did this to not cause
any calculation conflict around when we move Tello or the
target (i.e., human) moves. Therefore, when Tello is moving,
it does not detect if the target changes its position, so it does
not cause any interruption to its movement. This behavior
causes Tello to move like a chess piece on a grid, making one
movement at a time, and does not sense its environment un-
til it stops moving. When Tello’s facial detection is on, the
camera feedback thread takes each image frame from Tello’s
live video and analyzes it using the Haar Cascade algorithm.
As shown in Figure 2, a green square is drawn around every
face detected in the image frame to indicate a match. Once
the image frame is scanned and analyzed, we pass it to our
Priority Moving Algorithm.

3.3 Priority Moving Algorithm

Our Priority Moving (PM) algorithm determines when and
how Tello should move. We created this algorithm to over-
come a limitation from Tello’s Software Development Kit
(SDK) [3] – Tello can move only on one axis at a time (see
Figure 3). The PM algorithm determines which axis it should
move along first. The axes are prioritized in order from high-
est to lowest as the Z-axis (forward and backward), the X-axis
(left and right), and the Y-axis (up and down). The movement
algorithm processes the axes and coordinates from the ex-
tracted image frames to determine which axis to move along
first. In return, this helps Tello reach its target using the min-
imum possible number of movements.

Tello’s first movement occurs on the Z-axis. We move Tello
along the Z-axis by the difference between the target’s Z-
coordinate and our maximum cap limit (210 pixels). The
maximum cap limit is a value that Tello can not move any
closer beyond. Without the maximum limit, nothing prevents
Tello from colliding with the target or getting too close that it
will not accurately detect movement on the X or Y-axis. The
maximum cap limit for the Z-coordinate does not reflect the
distance from Tello to the target, but instead, it reflects the
diagonal length of the square drawn on the target’s face. The
maximum cap limit also serves as an ideal distance between
Tello and the target so that Tello can begin moving on another
axis like the X and Y-axes. Once Tello is close enough to the
target, we focus on the X-axis.

For the movement on the X-axis, we first calculate the av-
erage movement of the target on the X-axis by storing ten
consecutive X-coordinates. If the target’s X-axis movement
exceeds our X-axis move limit value (5 cm), we move Tello
on the X-axis by the average value we calculated. Otherwise,
we ignore the target’s movement on the X-axis. Here is the
reason: when Tello hovers in the air, it moves a little, caus-
ing a slight change in the target’s X-coordinate. Hence, we
assume that any X-axis movement below 5 cm will be con-
sidered insignificant and ignored. Note: Tello cannot perform
facial detection while moving on the X-axis simply because it

Figure 3: Direction of Tello‘s X, Y, and Z-axes.

is not able to differentiate between its movement and the tar-
get’s movement, causing Tello to keep moving indefinitely.

Considering users on elevated platforms like hills and cliffs,
we implemented the Y-axis movements for Tello to follow
the target going up and down staircases. For the Y-axis, we
use the same algorithm as the X-axis but instead use the Y-
coordinate and the Y-axis. Therefore, it runs into the same
problem (as the X-axis) of not stopping its facial detection
while moving along the Y-axis. To overcome this problem for
both the X and Y-axes, we created our own Artificial Velocity
algorithm to predict when Tello begins to move and when it
stops moving.

3.4 Artificial Velocity Algorithm

We created the Artificial Velocity (AV) algorithm to predict
when Tello will stop moving since the SDK does not provide
this ability. This algorithm uses the current speed of Tello to
calculate how much time Tello needs to reach the target from
when it is instructed to move. We first figure out the distance
that Tello will travel in centimeters using the PM algorithm
on the X or Y-axis. Second, we use Tello’s speed value to es-
timate how fast it will travel. Finally, we combine these two
values to create an artificial velocity for Tello to estimate the
time it will take to travel somewhere. Since we can approxi-
mately estimate the time Tello will take to fly on the X or Y-
axis, we can use this to turn facial detection off when Tello is
moving and then turn it back on when Tello stops. To achieve
all of this we implemented a timer using multi-threaded pro-
gramming skills (Section 3.1), and activated only when Tello



moves along the X or Y-axis.

4 Evaluation

We spent a total testing time of 20 hours to validate Tello’s
face detection and tracking functionality. We performed test-
ing in a classroom with desks, monitors, whiteboards, etc. for
real-world settings. During each test, a single subject stood
against a background consisting of a white wall, the afore-
mentioned classroom objects, and adequate lighting, simu-
lating realistic conditions. To account for AI biases with dif-
ferent human demographics, three subjects participated in the
experiments: A white female with long hair, a Middle Eastern
male with short hair, and a white male with short hair. Tello
was situated on a desk and once commanded to take off, Tello
rose to be approximately at eye level with the subject.

For evaluating our PM algorithm, we assigned three roles to
our team members in a rotating pattern during each test. The
three roles were the evaluator, the test subject, and the ob-
server. First, the test subject stood in front of Tello and be-
came its target. Second, the evaluator evaluated the extracted
data from each image frame. Third, the observer observed the
tests from a bystander perspective. When the subject moved,
the evaluator looked over the movement instructions and took
notes of its accuracy, where then the observer confirmed if the
movement instructions were properly executed. This helped
us fine-tune the entire algorithm to create smoother move-
ment.

For X-axis tracking and movement, we checked if Tello cen-
tered the subject following its left or right movement. Sim-
ilarly, for Y-axis we observed that Tello maintained the sub-
ject’s face centered as the target moved up and down. For
Z-axis tracking, we checked if our PM algorithm could con-
trol Tello by moving toward (or away from) the subject when
the length of the diagonal is less (or greater) than 210 pix-
els. With this, our evaluator confirmed that the maximum cap
(210 pixels) was correctly preserved.

5 Related Work

Jintasuttisak et al. [8] created an animal detection and track-
ing system using DJI Mavic 2 Pro drones [9]. For object
detection, they used a Deep Neural Network (DNN) algo-
rithm (i.e., YOLO-V5I [10]) and found the best sub-version
of YOLO that yielded the highest Mean Average Position for
their tracking of Oryx animals. In our project, we tracked hu-
mans using a DJI drone as well, opting for OpenCV, a com-
puter vision library, rather than using a DNN vision model.

Pawlicki et al. [11] measured Tello’s image recognition per-
formance in terms of speed and accuracy in detecting April-
Tags [12], which are images similar to QR codes. They eval-
uated the drone’s ability to read AprilTags from various dis-
tances and angles using snapshots, but did not use the video

streaming capabilities of the Tello drone as we did. As we
found during our experiments, they also concluded that effec-
tive lighting conditions are necessary to ensure the algorithms
operate accurately.

Subash et al. [13] utilized Tello to detect objects and peo-
ple, using Mask Region-based Convolutional Neural Network
(Mask R-CNN) [14], a deep learning model used for object
detection and pixel-by-pixel outlining, and by using OpenCV
libraries as we did. They enabled the drone to recognize ob-
jects within its field of sight, including classrooms and ob-
jects within large photos. They trained the algorithm using
annotated images allowing the drone to learn and improve its
detection accuracy over time. While their project utilized de-
tailed object outlines, we opted for traditional bounding boxes
since our facial detection task only required approximate ob-
ject locations.

Pohudina et al. [15] implemented drone swarms using Tello.
Testing up to four drones at a time, they developed an algo-
rithm to coordinate group flights. They found that complex
movements, such as flips, result in the strongest positioning
error, and that movements along the X-axis (left and right)
incur greater positioning error than movements along the Z-
axis (forward and backward). Like us, they opted for Tello
drones due to the DJI Tello Py, affordability, and safe design.

6 Conclusions

We implemented object tracking drones using Tello, which
is merely 98 x 92.5 x 41 mm in size and is equipped only
with a 720p camera and no advanced sensors. We used exist-
ing software libraries: DJI Tello Py to control Tello remotely,
OpenCV to perform digital image processing, and geometry
for providing movement instructions. DJI Tello Py also pro-
vided APIs to utilize a live video stream of Tello’s camera,
allowing us to break the video into multiple image frames
and process each individually. We used the Haar Cascade al-
gorithm in OpenCV for facial recognition and data extraction
on each image frame. Additionally, we created our own al-
gorithms – Priority Moving Algorithm and Artificial Velocity
Algorithm – for determining which axis Tello should move
along first and for estimating a velocity for Tello to predict
when it started and stopped moving.

Our work paves the way for a more versatile and robust drone
with face detection and tracking. For example, expanding de-
tection capabilities to recognize multiple faces will allow for
better target selection by specifying which target of follow.
Also, incorporating yaw rotation can enable 360° face detec-
tion and tracking so that it eliminates the X and Y-axes com-
putations, allowing Tello to have a wider range of movement.
While our current implementation restricts Tello’s movement
to move like a rook on a chessboard pattern due to limitations
in the DJI Tello Py library, it successfully demonstrates real-
world object tracking using a single camera and opens the
door for future advancements in face detection and tracking.



References

[1] Tello Drone, https://www.ryzerobotics.com/tello.
[2] Tello Specifications, https://www.ryzerobotics.com/
tello/specs.
[3] DJI Tello Py, https://djitellopy.readthedocs.io/en/latest/
tello.
[4] DJI Tello Py GitHub, https://github.com/damiafuentes/
DJITelloPy.
[5] Tello SDK 2.0 User Guide, https://dl-cdn.ryzerobotics.
com/downloads/Tello/Tello%20SDK%202.0%20User%
20Guide.pdf.
[6] OpenCV, https://opencv.org.
[7] Cascade Classifier, https://docs.opencv.org/3.4/db/d28/
tutorial cascade classifier.html.
[8] T. Jintasuttisak, A. Leonce, M. Sher Shah, T. Khafaga,
G. Simkins, E. Edirisinghe, Deep Learning based Animal De-
tection and Tracking in Drone Video Footage, in Interna-
tional Conference on Computing and Artificial Intelligence,
page 425–431 (2022).
[9] Mavic 2 Pro Specifications, https://www.dji.com/
mavic-2/info.
[10] YOLO-V5, https://pytorch.org/hub/ultralytics yolov5.
[11] M. Pawlicki, K. Hulek, A. Ostrowski, J. Mozaryn, Im-
plementation and Analysis of Ryze Tello Drone Vision-based
Positioning using AprilTags, in International Conference on
Methods and Models in Automation and Robotics, pages 309–
313 (2023).
[12] AprilTags Project, https://april.eecs.umich.edu/
software/apriltag.
[13] K. V. V. Subash, M. V. Srinu, M. Siddhartha, N. S. Har-
sha, P. Akkala, Object Detection using Ryze Tello Drone with
Help of Mask-RCNN, in International Conference on Inno-
vative Mechanisms for Industry Applications, pages 484–490
(2020).
[14] K. He, G. Gkioxari, P. Dollár, R. B. Girshick, Mask R-
CNN, CoRR, abs/1703.06870.
[15] O. Pohudina, M. Kovalevskyi, M. Pyvovar, Group
Flight Automation Using Tello EDU Unmanned Aerial Ve-
hicle, in International Conference on Computer Sciences and
Information Technologies (CSIT), pages 151–154 (2021).

https://www.ryzerobotics.com/tello
https://www.ryzerobotics.com/tello/specs
https://www.ryzerobotics.com/tello/specs
https://djitellopy.readthedocs.io/en/latest/tello
https://djitellopy.readthedocs.io/en/latest/tello
https://github.com/damiafuentes/DJITelloPy
https://github.com/damiafuentes/DJITelloPy
https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guide.pdf
https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guide.pdf
https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guide.pdf
https://opencv.org
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://www.dji.com/mavic-2/info
https://www.dji.com/mavic-2/info
https://pytorch.org/hub/ultralytics_yolov5
https://april.eecs.umich.edu/software/apriltag
https://april.eecs.umich.edu/software/apriltag

	Introduction
	Approaches
	Tello Drones
	Drone API
	Object Recognition

	Implementation
	Multi Threaded Programming
	Initial Movement
	Priority Moving Algorithm
	Artificial Velocity Algorithm

	Evaluation
	Related Work
	Conclusions

