
COMPARISON OF MACHINE LEARNING BASED INTRUSION DETECTION 

MODELS FOR DATA BREACHES 
 

 

Claire Brownell, Liu Cui 
West Chester University of Pennsylvania 
cb946801@wcupa.edu, lcui@wcupa.edu 

 

 



ABSTRACT 

A data breach is the intentional or inadvertent exposure of 

confidential information to unauthorized parties. Data 

breach poses serious threats to organizations, including 

significant reputational damage and financial losses. One 

of the defense strategies is Intrusion Detection System 

(IDS), which aims at detecting anomaly quickly by using 

machine learning models. In this paper, we present 

analysis of seven machine learning models when applied 

to the KDD dataset. These models include Logistic 

Regression, K-Nearest Neighbor, Gaussian Naïve Bayes, 

Linear SVC, Decision Tree, and Random Forest. The 

analysis is tested by using statistical measurements, such 

as accuracy, precision, detection rate, and false alarm rate 

of each model. 

 

KEY WORDS 

Machine Learning, Intrusion Detection, Data Breach 
 

1.  Introduction 
 

As technology and the Internet of Things evolves, it is 

inevitable that security risks come with this growth. 

Incidents can include, but are not limited to, unauthorized 

access to systems, denial of service (DoS) attacks that 

designed to disrupt service availability, phishing scams 

that aimed at deceiving individuals into revealing 

sensitive information, and both accidental and intentional 

acts leading to the deletion, damage, or corruption of data. 

Each instance of a data breach introduces new challenges 

for cybersecurity professionals to navigate during 

investigations. 

 

One of the most pressing concerns in the cybersecurity 

domain today revolves around network security. This 

issue has become increasingly prominent with the 

widespread adoption of mobile devices such as 

smartphones, tablets, and laptops. These handheld 

devices, while enhancing connectivity and convenience, 

also serve as potential gateways for cyber threats.  

 

Effective cybersecurity measures are essential not only 

for protecting sensitive information but also for ensuring 

the integrity and availability of services in an increasingly 

interconnected world. The goal of cybersecurity measures 

is to create a secure digital environment where users can 

trust in the protection of their data and the resilience of 

the systems they depend upon daily. 

 

One of the effective cybersecurity measures is IDS, which 

is a device or software application that monitors a 

computer network or systems, analyzes data from several 

key points in a computer system to detect malicious 

activity or policy violations [1]. There are three main 

types of IDS, namely signature-based IDS, anomaly-

based IDS, and hybrid IDS. The signature-based IDS 

efficiently processes a high volume of network traffic to 

match predefined string, pattern (such as sequences used 

by malware), or rules that correspond to a known attack. 

The biggest challenge of signature-based IDS is that it is 

very difficult to detect new attacks or unseen attacks. 

Anomaly-based IDS tried to overcome this limitation by 

following behavior-oriented detection. It examines 

network traffic and finds dynamic patterns, then compares 

them with normal behavior to detect deviations in the case 

of any anomalies. The hybrid detection approach 

considers both signature-based IDS and anomaly-based 

techniques, which tries to achieve high efficiency and 

identify zero-day attacks [1].  

 
Due to the large amount and high speed of malware 

infection, fast reactionary capability is a must for the IDS 

[5]. Data science that is good at digesting large amounts 

of data quickly and identifying patterns makes it possible. 

Therefore, we will apply seven different machine learning 

models on one of the most widely used cybersecurity 

dataset, NSL-KDD to evaluate compare their intrusion 

detection performance. 

 

The rest of the paper is organized as follows. Section 2 

introduces the experiment setup. Section 3 describes the 

dataset, which is NSL-KDD. Section 4 outlines the seven 

machine learning models. Section 5 shows all statistic 

comparisons. Section 6 concludes the paper.  

 

2.  Experiment 
 

The steps followed as part of the research methodology 

are as follows: 

• Dataset: NSL-KDD data set is applied (section 3) 

• Seven classification models are applied for IDS 

(section 4) 

x, y = make_classification(n_samples=125973, 

n_features=20, n_classes=2, random_state=42) 

# Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(x, y, 

test_size=0.2, random_state=42) 

# Define your models in a dictionary 

models = { 

    "Logistic Regression": 

LogisticRegression(max_iter=100, n_jobs=-1), 

    "KNN": KNeighborsClassifier(n_jobs=-1), 

    "Gaussian Naive Bayes": GaussianNB(), 

    "Linear SVC": LinearSVC(max_iter=1000, dual=False), 

    "Decision Tree": 

DecisionTreeClassifier(max_depth=10), 

    "Random Forest": 

RandomForestClassifier(n_estimators=100, 

max_depth=10, n_jobs=-1), 

    "PCA + Random Forest": 

make_pipeline(PCA(n_components=0.95), 

RandomForestClassifier(n_estimators=100, 

max_depth=10, n_jobs=-1)) 

} 

 

 

 

 

 



• All seven classification will be compared according 

to statistic results (section 5) 

 

3.  Data Set 
 

The NSL-KDD dataset is a refined version of its 

predecessor, the KDD'99 dataset. It is widely used in the 

cybersecurity field for training and evaluating IDS. By 

analyzing the patterns in the dataset, machine learning 

models differentiate between normal network behavior 

and various types of malicious activities [2,3]. 

 

The NSL-KDD data set has 42 attributes with a total 

number of 125,973 instances. Among the 42 attributes, 41 

of them represent the characteristic attributes of the data, 

and 1 attribute represents the type of the attack. 20% of 

the data is used as training and the rest of it is used in test 

data set. Here are some sample features that were 

provided in the dataset. 

 

Connection features: Each entry starts with network 

connection features such as protocol type (tcp, udp), 

service (ftp_data, http, private, etc.), and status (SF, REJ, 

S0, etc.). These initial fields are categorical and describe 

the basic context of the network connection. 

 

Numerical features: Following the initial categorical data 
are various numerical features that may include, but are 

not limited to, the number of bytes sent from source to 

destination (Src Bytes), the number of bytes sent from 

destination to source (Dst Bytes), and other statistics 

derived from the network traffic such as duration, error 

rates, number of connections to the same host in a 

specified time window, and more. These features are 

essential for identifying patterns indicative of normal or 

malicious activity. 

 

Labels: Each record concludes with a label indicating 

whether the connection is normal or corresponds to a 

specific type of attack (e.g., neptune, warezclient). This 

label is critical for supervised learning tasks, where the 

goal is to train a model to accurately classify unseen 

connections based on learned patterns. 

 

Difficulty level: The very last number in each record (e.g., 

20, 15, 21) represents the difficulty level assigned to each 

record, indicating how challenging it might be for a 

machine learning model to correctly classify the 

connection. 

 

The dataset contains a set of network connections, each 

represented by various features derived from the network 

traffic and labeled as either normal or an attack, with 

specific attack types identified. [2, 3]. Four types of 

attacks exist in the dataset: Denial of Services (DoS), 

Probe, User to Root (U2R), and Remote to Local (R2L). 

Table 1 shows the count of how many attack instances 

there were for each type. In Table 2-5, the samples get 

separated again into which specific attack it was identified 

as. 

Type of Attacks Number of Samples 

DoS  45927 

Probe  10163 

U2R 1545 

R2L 942 

Normal 67343 

Table 1: Attack instances in four categories 

 

Type of Attacks Number of Samples 

neptune attack 41214 

smurf attack 2646 

back attack 956 

teardrop  892 

pod attack 201 

land attack 18 

Table 2: Attack instances in DoS 

 

Type of Attacks Number of Samples 

satan attack 3633 

ipsweep attack 3599 

portsweep attack 2931 

Table 3: Attack instances in Probe 

 

Type of Attacks Number of Samples 

nmap attack 1493 

buffer_overflow attack 30 

rootkit attack 10 

loadmodule attack 9 

perl attack 3 

Table 4: Attack instances in U2R 

 

# Function to calculate all metrics 

def calculate_metrics(y_true, y_pred): 

    tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel() 

    accuracy = accuracy_score(y_true, y_pred) 

    precision = precision_score(y_true, y_pred, 

zero_division=0) 

    f1 = f1_score(y_true, y_pred) 

    metrics = { 

        'Accuracy': accuracy, 

        'Precision': precision, 

        'F1 Score': f1, 

        'TP': tp, 

        'FP': fp, 

        'TN': tn, 

        'FN': fn 

    } 

    return metrics 

# Dictionary to store results 

all_results = {} 

 

# Train, predict, and calculate metrics for each model 

for name, model in models.items(): 

    model.fit(X_train, y_train)  # Train model 

    predictions = model.predict(X_test)  # Make predictions 

    metrics = calculate_metrics(y_test, predictions)  # 

Calculate metrics 

    all_results[name] = metrics  # Store results 



Type of Attacks Number of Samples 

warezclient attack 890 

warezmaster attack 20 

imap attack 11 

ftp_write attack 8 

multihop attack 7 

phf attack 4 

spy attack 2 

Table 5: Attack instances in R2L 

 

4. Machine Learning Models Used in IDS 
There are two broad categories of machine learning 

models, supervised learning, and unsupervised learning. 

Supervised learning techniques learns from the input data 

known as the training data set and predict on testing data 

set [2]. Classification and regression methods are popular 

supervised learning techniques since they can be used to 

classify cybersecurity problems, such as denial-of-service 

attack (yes, no), spoofing (yes, no). In the following sub-

sections, seven classification models that applied in this 

paper will be introduced.  

 

4.1 Logistic Regression 
Logistic Regression is a statistical method used for 

analyzing a dataset in which there are one or more 

independent variables that determine an outcome. It is 

used to predict the likelihood of an event occurring based 

on prior observations of a dataset. In the context of 

machine learning, Logistic Regression is often used for 

binary classification tasks, such as spam detection. 

 

4.2 K-Nearest Neighbor (KNN) 

The K-Nearest Neighbor model is a type of instance-

based learning where the function is only approximated 

locally, and all computation is deferred until function 

evaluation. It's one of the simplest of all machine learning 

algorithms, and it's used for both classification and 

regression tasks, though it's more widely known for its 

application in classification. 

 

4.3 Gaussian Naïve Bayes 

Gaussian Naïve Bayes is a variant of Naïve Bayes that is 

specifically used when the features have a continuous 

distribution, and an assumption is made that the values 

associated with each class are distributed according to a 

Gaussian distribution (normal distribution). It's widely 

used for classification tasks since it works well with high-

dimensional data. It's particularly useful in applications 

like spam filtering, sentiment analysis, and document 

classification.  

 

4.4 Linear SVC 

Linear SVC is a type of Support Vector Machine (SVM) 

used for classification tasks. It tries to find the best linear 

boundary that separates the classes in the feature space. 

By maximizing the margin between the closest points of 

the classes (support vectors), Linear SVC minimizes 

classification errors. It's effective in high-dimensional 

spaces and for cases where the number of dimensions 

exceeds the number of samples. 

 

4.5 Decision Tree 

A Decision Tree is a flowchart-like tree structure where 

an internal node represents a feature, the branch 

represents a decision rule, and each leaf node represents 

the outcome. It is a type of supervised learning algorithm 

that is mostly used in classification problems and works 

for both categorical and continuous input and output 

variables. It's intuitive and easy to visualize but can be 

prone to overfitting if not pruned correctly. 

 

4.6 Random Forest 

Random Forest is an ensemble learning method for 

classification (and regression) that operates by 

constructing a multitude of decision trees at training time 

and outputting the class that is the mode of the classes 

(classification) or mean prediction (regression) of the 

individual trees. Random forests correct for decision trees' 

habit of overfitting to their training set, providing a more 

robust and accurate prediction by averaging multiple 

trees. 

 

4.7 PCA with Random Forest 

PCA with Random Forest combines the dimensionality 

reduction technique of PCA with the classification power 

of Random Forest. PCA is used to reduce the number of 

variables in a dataset while preserving as much 

information as possible. The transformed dataset, with 

reduced dimensions, is then used to train a Random Forest 

model. This approach can lead to improved model 

performance by reducing overfitting and decreasing 

training time, as Random Forest has fewer dimensions to 

consider. It's particularly useful when dealing with high-

dimensional data. 

 

5. Results 
In the statistic analysis, the True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative 

(FN) are determined first.  

• TP: Correctly predicted positive outcomes. 

• FP: Incorrectly predicted positive outcomes. 

• TN: Correctly predicted negative outcomes. 

• FN: Incorrectly predicted negative outcomes. 

 

Then, we use these values to calculate following criteria. 

• Accuracy measures probability of the correct 

classification. So, it can be determined as 

(TP+TN)/(TP+TN+FP+FN). 

• Precision measures the proportion of true positive 

results in all positive predictions as TP/(TP+FP). 

• False alarm rate is the opposite of precision, which 

measures the proportion of false positive rate in all 

positive predications as FP/(TP+FP) 

• Detection rate, or Recall measures the proportion of 

true positive results in all actual positives as TP/(TP+FN). 



• F1 score measures the mean of the precision and 

detection rate as (2*TP)/(2*TP+FP+FN). 

 

The bar graphs below present a comparative analysis of 

different machine learning models across various 

performance metrics. Figure 1 shows the TP, FP, TN, and 

FN for all models. which are the four fundamental 

categories in evaluating the performance of classification 

models. Each model is listed along the horizontal axis. 

Generally, high TP and TN bars would be indicative of 

better model performance, whereas high FP and FN bars 

would indicate areas where the model may be lacking. 

Among all seven models, Random Forest has the highest 

TP, TN, and lowest FP, and FN. Gaussian Naïve Bayes 

has the lowest FP, FN, and highest FP, and FN.  

 

 
Figure 1. Comparions of TP, FP, TN, and FN 

,  

 
Figure 2: Accuracy 

 

Figures 2 compares the accuracy of all seven models. 

Accuracy indicates the probability of correct classification 

among all predictions. All models demonstrating 

relatively high accuracy, indicating consistent model 

performance. Among them, Guassian Naïve Bayes has the 

lowest accuracy, which is 0.8905, and Random Forest has 

the highest accuracy, which is 0.938.  

 

Figure 3 compares the precision of all seven models. 

Precision focuses on true prediction. It calculate the 

percentage of TP among all prediction that is true. 

Random Forest has the highest percentage and Guassian 

Naïve Bayes has the lower percentage.  

 

 
Figure 3: Precision 

 

Figure 4 shows the false alarm rate, which is (1-

precision). The false alarm rate measures the proportion 

of incorrect classification as positives agaist all positive 

prediction. For the false alarm rate, lower values are 

preferable as they indicate fewer incorrect positive 

predictions. The Random Forest model exhibits the lowest 

false alarm rate, which, in conjunction with a high 

Detection Rate, suggests a strong performance. In 

contrast, Guassian Naïve Bayes and KNN have higher 

false alarm rates compared to other models. With 0.1192 

false alarm rate, it means among all true predictions 

11.92% are not an attack. High false alarm rate may bring 

large overhead for cybersecurity measurements.  

 

 
Figure 4: False Alarm Rate 



Figure 5 shows the Detection Rate. The Detection Rate 

measures the propotion of TP against actual positive 

(attack). The models generally show high detection rates, 

with PCA with Random Forest achieving the highest 

detection rate, followed closely by Random Forest and 

Decision Tree. Gaussian Naïve Bayes appears to have the 

lowest detection rate among the displayed models. 

 

 
Figure 5: Detection Rate 

 

Figure 6 illustrates F1 scores, which combine precision 

and detection into a single metric. These scores are also 

high across the board, signifying a good balance between 

precision and recall among the models. 

 
Figure 6: F1 Score 

 

6.  Conclusion and Future Research 
 

To conclude, the Random Forest model emerged as the 

most effective in this intrusion detection scenario, 

balancing a high detection rate with a low false alarm 

rate. This suggests that ensemble methods, such as 

Random Forest, are particularly suitable for handling 

complex datasets with a mix of categorical and numerical 

features, like those typically found in network intrusion 

detection tasks. The use of PCA in conjunction with 

Random Forest also shows promise, potentially offering a 

means to improve performance further by reducing 

dimensionality and focusing on the most informative 

features. 

 

Gaussian Naïve Bayes, KNN, and Linear SVC do not 

perform well since they have lower detection rate, lower 

precision, and higher false alarm rate.  

 

In the future research, we will separate the dataset 

according to each type of attack. Analyze the seven 

models against each attack type and see whether we could 

find the best model to detect each attack. 
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