
COMPARISON OF MACHINE LEARNING BASED INTRUSION DETECTION

MODELS FOR DATA BREACHES

Claire Brownell, Liu Cui
West Chester University of Pennsylvania
cb946801@wcupa.edu, lcui@wcupa.edu

ABSTRACT

A data breach is the intentional or inadvertent exposure of

confidential information to unauthorized parties. Data

breach poses serious threats to organizations, including

significant reputational damage and financial losses. One

of the defense strategies is Intrusion Detection System

(IDS), which aims at detecting anomaly quickly by using

machine learning models. In this paper, we present

analysis of seven machine learning models when applied

to the KDD dataset. These models include Logistic

Regression, K-Nearest Neighbor, Gaussian Naïve Bayes,

Linear SVC, Decision Tree, and Random Forest. The

analysis is tested by using statistical measurements, such

as accuracy, precision, detection rate, and false alarm rate

of each model.

KEY WORDS

Machine Learning, Intrusion Detection, Data Breach

1. Introduction

As technology and the Internet of Things evolves, it is

inevitable that security risks come with this growth.

Incidents can include, but are not limited to, unauthorized

access to systems, denial of service (DoS) attacks that

designed to disrupt service availability, phishing scams

that aimed at deceiving individuals into revealing

sensitive information, and both accidental and intentional

acts leading to the deletion, damage, or corruption of data.

Each instance of a data breach introduces new challenges

for cybersecurity professionals to navigate during

investigations.

One of the most pressing concerns in the cybersecurity

domain today revolves around network security. This

issue has become increasingly prominent with the

widespread adoption of mobile devices such as

smartphones, tablets, and laptops. These handheld

devices, while enhancing connectivity and convenience,

also serve as potential gateways for cyber threats.

Effective cybersecurity measures are essential not only

for protecting sensitive information but also for ensuring

the integrity and availability of services in an increasingly

interconnected world. The goal of cybersecurity measures

is to create a secure digital environment where users can

trust in the protection of their data and the resilience of

the systems they depend upon daily.

One of the effective cybersecurity measures is IDS, which

is a device or software application that monitors a

computer network or systems, analyzes data from several

key points in a computer system to detect malicious

activity or policy violations [1]. There are three main

types of IDS, namely signature-based IDS, anomaly-

based IDS, and hybrid IDS. The signature-based IDS

efficiently processes a high volume of network traffic to

match predefined string, pattern (such as sequences used

by malware), or rules that correspond to a known attack.

The biggest challenge of signature-based IDS is that it is

very difficult to detect new attacks or unseen attacks.

Anomaly-based IDS tried to overcome this limitation by

following behavior-oriented detection. It examines

network traffic and finds dynamic patterns, then compares

them with normal behavior to detect deviations in the case

of any anomalies. The hybrid detection approach

considers both signature-based IDS and anomaly-based

techniques, which tries to achieve high efficiency and

identify zero-day attacks [1].

Due to the large amount and high speed of malware

infection, fast reactionary capability is a must for the IDS

[5]. Data science that is good at digesting large amounts

of data quickly and identifying patterns makes it possible.

Therefore, we will apply seven different machine learning

models on one of the most widely used cybersecurity

dataset, NSL-KDD to evaluate compare their intrusion

detection performance.

The rest of the paper is organized as follows. Section 2

introduces the experiment setup. Section 3 describes the

dataset, which is NSL-KDD. Section 4 outlines the seven

machine learning models. Section 5 shows all statistic

comparisons. Section 6 concludes the paper.

2. Experiment

The steps followed as part of the research methodology

are as follows:

• Dataset: NSL-KDD data set is applied (section 3)

• Seven classification models are applied for IDS

(section 4)

x, y = make_classification(n_samples=125973,

n_features=20, n_classes=2, random_state=42)

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(x, y,

test_size=0.2, random_state=42)

Define your models in a dictionary

models = {

 "Logistic Regression":

LogisticRegression(max_iter=100, n_jobs=-1),

 "KNN": KNeighborsClassifier(n_jobs=-1),

 "Gaussian Naive Bayes": GaussianNB(),

 "Linear SVC": LinearSVC(max_iter=1000, dual=False),

 "Decision Tree":

DecisionTreeClassifier(max_depth=10),

 "Random Forest":

RandomForestClassifier(n_estimators=100,

max_depth=10, n_jobs=-1),

 "PCA + Random Forest":

make_pipeline(PCA(n_components=0.95),

RandomForestClassifier(n_estimators=100,

max_depth=10, n_jobs=-1))

}

• All seven classification will be compared according

to statistic results (section 5)

3. Data Set

The NSL-KDD dataset is a refined version of its

predecessor, the KDD'99 dataset. It is widely used in the

cybersecurity field for training and evaluating IDS. By

analyzing the patterns in the dataset, machine learning

models differentiate between normal network behavior

and various types of malicious activities [2,3].

The NSL-KDD data set has 42 attributes with a total

number of 125,973 instances. Among the 42 attributes, 41

of them represent the characteristic attributes of the data,

and 1 attribute represents the type of the attack. 20% of

the data is used as training and the rest of it is used in test

data set. Here are some sample features that were

provided in the dataset.

Connection features: Each entry starts with network

connection features such as protocol type (tcp, udp),

service (ftp_data, http, private, etc.), and status (SF, REJ,

S0, etc.). These initial fields are categorical and describe

the basic context of the network connection.

Numerical features: Following the initial categorical data
are various numerical features that may include, but are

not limited to, the number of bytes sent from source to

destination (Src Bytes), the number of bytes sent from

destination to source (Dst Bytes), and other statistics

derived from the network traffic such as duration, error

rates, number of connections to the same host in a

specified time window, and more. These features are

essential for identifying patterns indicative of normal or

malicious activity.

Labels: Each record concludes with a label indicating

whether the connection is normal or corresponds to a

specific type of attack (e.g., neptune, warezclient). This

label is critical for supervised learning tasks, where the

goal is to train a model to accurately classify unseen

connections based on learned patterns.

Difficulty level: The very last number in each record (e.g.,

20, 15, 21) represents the difficulty level assigned to each

record, indicating how challenging it might be for a

machine learning model to correctly classify the

connection.

The dataset contains a set of network connections, each

represented by various features derived from the network

traffic and labeled as either normal or an attack, with

specific attack types identified. [2, 3]. Four types of

attacks exist in the dataset: Denial of Services (DoS),

Probe, User to Root (U2R), and Remote to Local (R2L).

Table 1 shows the count of how many attack instances

there were for each type. In Table 2-5, the samples get

separated again into which specific attack it was identified

as.

Type of Attacks Number of Samples

DoS 45927

Probe 10163

U2R 1545

R2L 942

Normal 67343

Table 1: Attack instances in four categories

Type of Attacks Number of Samples

neptune attack 41214

smurf attack 2646

back attack 956

teardrop 892

pod attack 201

land attack 18

Table 2: Attack instances in DoS

Type of Attacks Number of Samples

satan attack 3633

ipsweep attack 3599

portsweep attack 2931

Table 3: Attack instances in Probe

Type of Attacks Number of Samples

nmap attack 1493

buffer_overflow attack 30

rootkit attack 10

loadmodule attack 9

perl attack 3

Table 4: Attack instances in U2R

Function to calculate all metrics

def calculate_metrics(y_true, y_pred):

 tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()

 accuracy = accuracy_score(y_true, y_pred)

 precision = precision_score(y_true, y_pred,

zero_division=0)

 f1 = f1_score(y_true, y_pred)

 metrics = {

 'Accuracy': accuracy,

 'Precision': precision,

 'F1 Score': f1,

 'TP': tp,

 'FP': fp,

 'TN': tn,

 'FN': fn

 }

 return metrics

Dictionary to store results

all_results = {}

Train, predict, and calculate metrics for each model

for name, model in models.items():

 model.fit(X_train, y_train) # Train model

 predictions = model.predict(X_test) # Make predictions

 metrics = calculate_metrics(y_test, predictions) #

Calculate metrics

 all_results[name] = metrics # Store results

Type of Attacks Number of Samples

warezclient attack 890

warezmaster attack 20

imap attack 11

ftp_write attack 8

multihop attack 7

phf attack 4

spy attack 2

Table 5: Attack instances in R2L

4. Machine Learning Models Used in IDS
There are two broad categories of machine learning

models, supervised learning, and unsupervised learning.

Supervised learning techniques learns from the input data

known as the training data set and predict on testing data

set [2]. Classification and regression methods are popular

supervised learning techniques since they can be used to

classify cybersecurity problems, such as denial-of-service

attack (yes, no), spoofing (yes, no). In the following sub-

sections, seven classification models that applied in this

paper will be introduced.

4.1 Logistic Regression
Logistic Regression is a statistical method used for

analyzing a dataset in which there are one or more

independent variables that determine an outcome. It is

used to predict the likelihood of an event occurring based

on prior observations of a dataset. In the context of

machine learning, Logistic Regression is often used for

binary classification tasks, such as spam detection.

4.2 K-Nearest Neighbor (KNN)

The K-Nearest Neighbor model is a type of instance-

based learning where the function is only approximated

locally, and all computation is deferred until function

evaluation. It's one of the simplest of all machine learning

algorithms, and it's used for both classification and

regression tasks, though it's more widely known for its

application in classification.

4.3 Gaussian Naïve Bayes

Gaussian Naïve Bayes is a variant of Naïve Bayes that is

specifically used when the features have a continuous

distribution, and an assumption is made that the values

associated with each class are distributed according to a

Gaussian distribution (normal distribution). It's widely

used for classification tasks since it works well with high-

dimensional data. It's particularly useful in applications

like spam filtering, sentiment analysis, and document

classification.

4.4 Linear SVC

Linear SVC is a type of Support Vector Machine (SVM)

used for classification tasks. It tries to find the best linear

boundary that separates the classes in the feature space.

By maximizing the margin between the closest points of

the classes (support vectors), Linear SVC minimizes

classification errors. It's effective in high-dimensional

spaces and for cases where the number of dimensions

exceeds the number of samples.

4.5 Decision Tree

A Decision Tree is a flowchart-like tree structure where

an internal node represents a feature, the branch

represents a decision rule, and each leaf node represents

the outcome. It is a type of supervised learning algorithm

that is mostly used in classification problems and works

for both categorical and continuous input and output

variables. It's intuitive and easy to visualize but can be

prone to overfitting if not pruned correctly.

4.6 Random Forest

Random Forest is an ensemble learning method for

classification (and regression) that operates by

constructing a multitude of decision trees at training time

and outputting the class that is the mode of the classes

(classification) or mean prediction (regression) of the

individual trees. Random forests correct for decision trees'

habit of overfitting to their training set, providing a more

robust and accurate prediction by averaging multiple

trees.

4.7 PCA with Random Forest

PCA with Random Forest combines the dimensionality

reduction technique of PCA with the classification power

of Random Forest. PCA is used to reduce the number of

variables in a dataset while preserving as much

information as possible. The transformed dataset, with

reduced dimensions, is then used to train a Random Forest

model. This approach can lead to improved model

performance by reducing overfitting and decreasing

training time, as Random Forest has fewer dimensions to

consider. It's particularly useful when dealing with high-

dimensional data.

5. Results
In the statistic analysis, the True Positive (TP), True

Negative (TN), False Positive (FP), and False Negative

(FN) are determined first.

• TP: Correctly predicted positive outcomes.

• FP: Incorrectly predicted positive outcomes.

• TN: Correctly predicted negative outcomes.

• FN: Incorrectly predicted negative outcomes.

Then, we use these values to calculate following criteria.

• Accuracy measures probability of the correct

classification. So, it can be determined as

(TP+TN)/(TP+TN+FP+FN).

• Precision measures the proportion of true positive

results in all positive predictions as TP/(TP+FP).

• False alarm rate is the opposite of precision, which

measures the proportion of false positive rate in all

positive predications as FP/(TP+FP)

• Detection rate, or Recall measures the proportion of

true positive results in all actual positives as TP/(TP+FN).

• F1 score measures the mean of the precision and

detection rate as (2*TP)/(2*TP+FP+FN).

The bar graphs below present a comparative analysis of

different machine learning models across various

performance metrics. Figure 1 shows the TP, FP, TN, and

FN for all models. which are the four fundamental

categories in evaluating the performance of classification

models. Each model is listed along the horizontal axis.

Generally, high TP and TN bars would be indicative of

better model performance, whereas high FP and FN bars

would indicate areas where the model may be lacking.

Among all seven models, Random Forest has the highest

TP, TN, and lowest FP, and FN. Gaussian Naïve Bayes

has the lowest FP, FN, and highest FP, and FN.

Figure 1. Comparions of TP, FP, TN, and FN

,

Figure 2: Accuracy

Figures 2 compares the accuracy of all seven models.

Accuracy indicates the probability of correct classification

among all predictions. All models demonstrating

relatively high accuracy, indicating consistent model

performance. Among them, Guassian Naïve Bayes has the

lowest accuracy, which is 0.8905, and Random Forest has

the highest accuracy, which is 0.938.

Figure 3 compares the precision of all seven models.

Precision focuses on true prediction. It calculate the

percentage of TP among all prediction that is true.

Random Forest has the highest percentage and Guassian

Naïve Bayes has the lower percentage.

Figure 3: Precision

Figure 4 shows the false alarm rate, which is (1-

precision). The false alarm rate measures the proportion

of incorrect classification as positives agaist all positive

prediction. For the false alarm rate, lower values are

preferable as they indicate fewer incorrect positive

predictions. The Random Forest model exhibits the lowest

false alarm rate, which, in conjunction with a high

Detection Rate, suggests a strong performance. In

contrast, Guassian Naïve Bayes and KNN have higher

false alarm rates compared to other models. With 0.1192

false alarm rate, it means among all true predictions

11.92% are not an attack. High false alarm rate may bring

large overhead for cybersecurity measurements.

Figure 4: False Alarm Rate

Figure 5 shows the Detection Rate. The Detection Rate

measures the propotion of TP against actual positive

(attack). The models generally show high detection rates,

with PCA with Random Forest achieving the highest

detection rate, followed closely by Random Forest and

Decision Tree. Gaussian Naïve Bayes appears to have the

lowest detection rate among the displayed models.

Figure 5: Detection Rate

Figure 6 illustrates F1 scores, which combine precision

and detection into a single metric. These scores are also

high across the board, signifying a good balance between

precision and recall among the models.

Figure 6: F1 Score

6. Conclusion and Future Research

To conclude, the Random Forest model emerged as the

most effective in this intrusion detection scenario,

balancing a high detection rate with a low false alarm

rate. This suggests that ensemble methods, such as

Random Forest, are particularly suitable for handling

complex datasets with a mix of categorical and numerical

features, like those typically found in network intrusion

detection tasks. The use of PCA in conjunction with

Random Forest also shows promise, potentially offering a

means to improve performance further by reducing

dimensionality and focusing on the most informative

features.

Gaussian Naïve Bayes, KNN, and Linear SVC do not

perform well since they have lower detection rate, lower

precision, and higher false alarm rate.

In the future research, we will separate the dataset

according to each type of attack. Analyze the seven

models against each attack type and see whether we could

find the best model to detect each attack.

References:

[1] Sarker, I. H., Kayes, A. S. M., Badsha, S., Alqahtani,

H., Watters, P., & Ng, A. (2020, July 1). Cybersecurity

Data Science: An overview from machine learning

perspective - journal of big data. SpringerLink.

https://link.springer.com/article/10.1186/s40537-020-

00318-5

[2] Aggarwal, P., Sharma, S. K. (2015, August 21).

Analysis of KDD dataset attributes - class wise for

intrusion detection. Procedia Computer Science.

https://www.sciencedirect.com/science/article/pii/S18770

50915020190?ref=pdf_download&fr=RR-

2&rr=8597f0d8385143bc

[3] husnaa606. (2023, December 28). NSL-

KDD/datmin/kel.3. Kaggle.

https://www.kaggle.com/code/husnaa606/nsl-kdd-datmin-

kel-3

[4] Mahesh1, G., Sujit, Y., Snehal, K., Jairaj, N., &

Ramchandra, S. (n.d.). Data leakage detection - IRJET.

https://www.irjet.net/archives/V3/i3/IRJET-V3I3227.pdf

[5] Debar, H., Hochberg, J., & Denning, D. E. (2002,

May 3). Intrusion detection techniques and approaches.

Computer Communications.

https://www.sciencedirect.com/science/article/pii/S01403

66402000373?casa_token=MhXCEmrCS6IAAAAA%3A

7EJ3JA9R6JIVxVYlu9Md_PuOIwMVOthB2vRffPFww

GUbZ0DDW37G6tVCBAsvOaf57FbnArp77o

	ABSTRACT
	KEY WORDS

