
OPTIMIZATION OF ENERGY CONSUMPTION IN REAL TIME SYSTEMS USING IOT

DEVICES

Sreeja Bethi, Ashik Ahmed Bhiuyan, Md Amiruzzaman
Department of Computer Science, West Chester University

{sb996465,abhuiyan,mamiruzzaman}@wcupa.edu

ABSTRACT
The increasing electricity demand necessitates innovative
solutions to optimize energy consumption. This research
delves into the realm of Real-Time Operating Systems de-
ployed in Internet of Things (IoT) devices, aiming to de-
velop energy-efficient algorithms. The focus is on balanc-
ing the multifaceted needs of IoT applications, including
low latency, energy efficiency, and optimal resource uti-
lization. The objective is to enhance IoT systems’ overall
performance and responsiveness while minimizing power
consumption. This study introduces an energy-efficient
scheduling framework that combines data-driven methods,
machine learning, and real-time scheduling. Machine
learning identifies consumption patterns. Energy-efficient
scheduling algorithms, like DVFS and predictive schedul-
ing, are explored to reduce energy use while meeting real-
time demands. The findings of this research would help de-
velop smart cities, offering a practical framework for opti-
mizing energy consumption in IoT devices.
KEY WORDS Dynamic Voltage and Frequency Sharing,
Home Energy Management System, Demand Response.

1 Introduction

In the foreseeable future, global electricity demand is
anticipated to surge, growing at an accelerated rate of 3%
annually. This uptick is primarily driven by the escalating
electricity consumption in emerging markets and develop-
ing economies (EMDEs). As the world gradually recovers
from the energy crisis, the growth in global electricity
demand is poised to jump from 2.6% in 2023 to an average
of 3.2% during 2024-2025. This robust growth surpasses
the pre-pandemic rate of 2.4% observed between 2015 and
2019. By the year 2025, the demand is projected to soar
by a staggering 2,500 TWh compared to 2022 levels [1].
This surge in demand has elevated the costs associated
with energy consumption, particularly for individuals.
The majority of this electricity consumption emanates
from larger cities, now often referred to as smart cities.
Given this pressing scenario, there is an urgent need to
implement a comprehensive strategy to conserve electric

energy effectively.

In response to this challenge, our initiative focuses on the
development of smart cities by deploying an innovative en-
ergy awareness task scheduling framework. This framework
harnesses sophisticated task scheduling algorithms and an-
alyzes the intricate energy consumption patterns of diverse
devices and systems within the smart city infrastructure. By
embracing this forward-thinking approach, we aim to opti-
mize energy usage, especially during peak demand periods.
Through intelligent scheduling and a deep understanding of
energy consumption patterns, our framework not only en-
sures efficient allocation of tasks but also mitigates unnec-
essary energy wastage. This proactive measure not only cur-
tails costs for individuals but also contributes significantly to
the overall energy conservation efforts. In essence, our ap-
proach stands at the forefront of sustainable urban develop-
ment, aligning with the evolving needs of our communities
and the environment. By leveraging cutting-edge technol-
ogy and insightful data analysis, we are paving the way to-
wards a more energy-efficient future for smart cities world-
wide.

1.1 Objectives

The main objective of this research is to optimize task
scheduling algorithms designed explicitly for RTOS de-
ployed in IoT devices. These algorithms must balance the
diverse requirements of IoT applications, such as low la-
tency, energy efficiency, and effective utilization of limited
resources, to enhance the overall performance and respon-
siveness of IoT systems. Integrate energy-awareness into
scheduling algorithms, ensuring tasks are executed to min-
imize power consumption without compromising real-time
requirements. This involves optimizing task execution se-
quences and leveraging low-power status effectively.

1.2 Contributions

Energy-aware scheduling can be approached using various
algorithms. Here we are listing contributions of this paper:



1.2.1 Dynamic Voltage and Frequency Scal-
ing (DVFS)
DVFS adjusts the operating frequency and voltage of pro-
cessors dynamically to minimize energy consumption while
meeting performance requirements [2, 3]. These are com-
monly used in processors and computing systems to opti-
mize energy usage without sacrificing performance signifi-
cantly.

1.3 Dynamic Power Management (DPM)
DPM is an effective strategy to curb static power consump-
tion by capitalizing on idle intervals during task execution.
When the duration of idle time reaches a predefined thresh-
old, often referred to as the break-even time [4, 5], the pro-
cessor is transitioned into a low-power sleep mode. This
proactive approach significantly diminishes the processor’s
static power usage, optimizing energy efficiency without
compromising performance.

1.3.1 Energy Efficient Load Balancing
Distributes tasks evenly across computing resources to bal-
ance the workload and avoid overloading specific resources,
which can lead to increased energy consumption. They are
Used in various distributed computing environments to opti-
mize energy usage while ensuring high system performance.

1.3.2 Predictive Energy-aware Scheduling
Utilizes predictive models to forecast energy consumption
and adapt task scheduling strategies proactively. It is bene-
ficial in scenarios where energy usage patterns exhibit pre-
dictability, allowing tasks to be scheduled optimally in an-
ticipation of future energy demands. These algorithms often
involve a combination of traditional scheduling techniques
with energy-specific optimizations to strike a balance be-
tween energy efficiency and task performance.

2 Ensuring IoT devices operate with minimal
energy consumption

2.1 Challenges
Generally, optimizing or reducing energy consumption in
real-time systems is quite challenging, some of those chal-
lenges include:
Real-Time Requirements Many smart city applications,
such as traffic management and surveillance, require real-
time data processing. Balancing the need for energy effi-
ciency with the stringent latency requirements of these ap-
plications is a challenge. Delayed processing due to energy
optimization techniques could impact the effectiveness of
real-time systems.

Data Privacy and Security Smart city applications often
deal with sensitive data, such as citizen information and
surveillance footage. Ensuring data privacy and security
while optimizing energy consumption adds complexity to
the design of scheduling algorithms. Encryption and secure
data transmission are essential but can introduce computa-
tional overhead.
Scalability Smart cities generate vast amounts of data
from various sources. Energy-aware scheduling algorithms
must be scalable to handle the increasing volume of data
and the growing number of connected devices. Scalability
challenges can arise in both algorithm design and system
architecture.

Dynamic Workload Smart city workloads are highly dy-
namic, with fluctuations in demand based on factors such as
time of day, events, and emergencies. Designing schedul-
ing algorithms that can adapt to these dynamic workloads in
real-time and make energy-efficient decisions is a challenge.

2.2 Case Study
Dynamic Voltage and Frequency Scaling (DVFS), as well
as algorithms for adaptive power management and sleep
mode optimization, are employed to conserve energy in IoT
devices. These algorithms ensure devices operate in low-
power states when idle and adapt their power consumption
based on workload.
Home Energy Management System Global energy de-
mand is rising, driven by the integration of renewable
sources. Aging grid infrastructure needs upgrading for safe,
reliable, and clean energy. Consequently, the smart grid
concept has emerged, in which all players in the grid net-
work connect and interact with each other through informa-
tion and communication technologies (ICTs) to improve sta-
bility, resource efficiency, and sustainability in energy pro-
duction, transmission, and distribution fields [6]. Residen-
tial demand-side management (DSM), within this concept,
tackles challenges by optimizing energy use in households,
responsible for 26.9% of global electricity consumption.
In recent times, researchers have directed their attention to-
ward the development of Home Energy Management Sys-
tems (HEMSs) to address various challenges and innova-
tions in the energy sector. The focal point of this study
is also the creation of a HEMS designed for application
in residential buildings. The primary objectives are to fa-
cilitate Demand Response (DR) mechanisms and enhance
self-consumption. The aim is to empower households with
a system that efficiently manages energy usage, responds
to dynamic energy demands, and promotes increased self-
sufficiency.
Currently, space heating and cooling contribute to over
50% of the total electricity consumption in residential
settings [7]. Ensuring comfort in indoor temperature is



crucial, especially since discomfort is a significant obstacle
to adopting Demand Response programs. In addressing
this, the study suggests incorporating a smart thermostat
into a Home Energy Management System (HEMS). This
integration aims to achieve efficient DR for air-conditioning
while enhancing the overall thermal comfort of residents.

A Home Energy Management System (HEMS) empowers
users to efficiently monitor, control, and automate an
increasing array of smart appliances with minimal effort
and time, requiring minimal human intervention [8]. This
system is designed to optimize electricity bill savings
through Demand Response (DR), self-consumption, and
energy arbitrage. The comprehensive approach of HEMS
helps avoid demand charges and ensures compliance with
peak limits.

Recent research has focused on HEMS for Demand Re-
sponse, exploring scheduling for shiftable appliances in
smart homes. However, this alone resulted in limited bill
savings. Another study optimized load scheduling for vari-
ous appliances, including a dishwasher, washing machine,
clothes dryer, and plug-in hybrid electric vehicle (EV),
under Real-Time Pricing (RTP). Despite achieving peak
limiting to prevent additional peaks, pre-cooling/heating
for air conditioning (AC) and electric water heater (EWH)
during peak hours was not considered.

An algorithm-based HEMS, developed in another study, fac-
tored in load priority and user comfort preferences using
AC, EWH, EV, and clothes dryer. The system imposed a
peak limit on household energy consumption, ensuring de-
mand curtailment during peak hours. However, the study
did not incorporate pre-cooling/heating for AC and EWH.
Smart Home Appliances in residential Demand Re-
sponse Generally, smart home appliances compatible with
residential Demand Response fall into three categories:

Time-shiftable Appliances: These appliances have lower
energy consumption compared to others. They operate
with fixed power patterns and cannot be interrupted once
started. Examples include washing machines, dishwashers,
and clothes dryers.
Thermostatically Controlled Appliances: These appliances
have the ability to store thermal energy in a designated
medium through precooling or preheating. They enable pre-
cise temperature adjustments within defined thermal bound-
aries. Examples of such appliances include air conditioners,
electric water heaters, and refrigerators.
Power Shiftable Appliances: These appliances refer to de-
vices that allow for flexibility in their power consumption
patterns, enabling users to shift or adjust the timing of their
energy usage. These appliances can be controlled to oper-
ate during periods of lower electricity demand or when re-

newable energy sources are more abundant, contributing to
better grid management and energy efficiency. Examples of
such appliances includes Electric Vehicles (EVs).

2.2.1 Smart Thermostats
Achieving the desired level of Demand Response adoption
may face challenges, particularly concerning potential vio-
lations of end-user comfort. One notably concerning viola-
tion is related to thermal comfort.
[9] handled air conditioners (ACs) were managed as curtail-
able loads, with curtailment achieved through kilowatt (kW)
reduction. However, the absence of a thermal model capa-
ble of accurately predicting the household’s thermal behav-
ior poses a risk. This method is prone to causing thermal
comfort violations as it fails to capture temperature changes
effectively.
Several studies have introduced a smart thermostat based
on fuzzy logic for residential heating and air conditioning
(HVAC) systems [10]. In contrast to conventional ther-
mostats, the suggested model employs a fuzzy inference
system (FIS) to adapt the set-point temperature based on
variations in electricity prices, occupant presence, and out-
door temperature. However, the decision-making process
did not assess the potential presence of a small-scale pho-
tovoltaic (PV) system or a Battery Energy Storage System
(BESS) within the household.
[11] Suggested a model based on MATLAB-TRNSYS that
offers pre-cooling/heating capabilities and the ability to
switch between an electrical Air Source Heat Pump (ASHP)
and a natural gas mini boiler. The switching is contingent on
the thermal demand of a house and prevailing electricity/gas
prices.

2.2.2 Current Focus
Our current focus lies in the development of Thermostati-
cally Controlled Appliances using Internet of Things (IoT)
devices. The primary objective is to integrate a Home En-
ergy Management System (HEMS) with a smart thermostat
to enhance the efficiency of Demand Response (DR) for
Electric Water Heaters (EWH) while ensuring a heightened
level of thermal comfort for end-users.
In contrast to conventional thermostats with fixed set-points,
we are planning to introduce a smart thermostat that dy-
namically adjusts the initialized set-point based on chang-
ing conditions, including electricity prices, solar radiation,
and occupant presence. This approach allows for flexi-
ble Demand Response implementation for EWH. For in-
stance, during on-peak hours, the thermostat sets a higher
set-point within the American Society of Heating and Air-
Conditioning Engineers [12] limits for EWH to reduce elec-
tricity costs. However, the set-point varies for different oc-
cupancy levels. In situations of high occupancy, the smart



thermostat prioritizes thermal comfort, leading to a lower
set-point compared to scenarios with less or no occupancy.
Moreover, the adjustments to the EWH set-point also con-
sider the state of photovoltaic (PV) generation at home.
Planning to implement Fuzzy logic as the preferred method
for considering multiple factors in this dynamic system. Ul-
timately, the integration of a smart thermostat with a HEMS
ensures a sophisticated and adaptive approach to DR for
EWH, aligning with varying occupancy levels and PV gen-
eration states while prioritizing both energy efficiency and
thermal comfort.
Implementation for Thermostatically Controlled Appli-
ances (TCAs) A gray-box model utilizing a first-order
lumped capacitance 1R1C configuration is employed. This
model, widely acknowledged in various studies, is deemed
sufficiently reliable for capturing the thermal behavior of the
house, Electric Water Heater (EWH) tank, and refrigerator
cabinet [13].
Eq. (1) formulates the EWH model. Here, the EWH tank is
assumed to be located in a part of the house that is under the
effect of AC operation, thus represents the day-ahead am-
bient set-point temperatures imposed by the smart AC ther-
mostat. uc vector defines the hot water usage times. When
hot water is used, it is replaced by inlet water. EWH does
not allow the water temperature to drop below the minimum
allowed temperature. Eq. (2) denotes the allowed hot water
temperature limits inside the EWH tank. Eq. (3) gives the
electrical power consumption of the EWH.

Thw
t =

(Tamb
t + cEWH .REWH .T c

t .uct +REWH .COPEWH .PEWH .xEWH
t )

(1 + cEWH .REWH .uct)
)

+(Thw
t−1−(

(Tamb
t + CEWH .REWH .COPEWH .PEWH .xEWH

t )

(1 + cEWH .REWH .uct)
).

e
−(1+cEWH.REWH.wct).∇t

REWH.cEWH ,∀t (1)

Thw,min ≤ Thw
t ≤ Thw,max,∀t (2)

PEWH = PEWH .xEWH
t ,∀t (3)

• Thw
t – EWH hot water temperature [Celsius]

• T amb
t ,T amb

t−1 – Ambient temperature [Celsius]

• CEWH – Constant amount of water heat flow capacity
in a single time-step[kW/K]

• REWH – EWH thermal Resistance [Celsius/kW]

• T c
t – EWH intel water temperature [Celsius]

• uct – daily cold-water usage times

• (COP )EWH – EWH coefficient of performance

• PEWH ,PEWH
t – EWH power[kW]

• xEWH
t – Decision variable between 0-1 defining EWH

usage

• Thw
t – EWH hot water temperature [Celsius]

• T amb
t ,T amb

t−1 – Ambient temperature [Celsius]

• CEWH – Constant amount of water heat flow capacity
in a single time-step[kW/K]

• REWH – EWH thermal Resistance [Celsius/kW]

• T c
t – EWH intel water temperature [Celsius]

• (uc)t – daily cold-water usage times

• COPEWH – EWH coefficient of performance

• PEWH , PEWH
t – EWH power[kW]

• xEWH
t – Decision variable between 0-1 defining EWH

usage

3 Conclusion

In this investigation, we propose a novel architecture for
Home Energy Management Systems based on Mixed Inte-
ger Linear Programming. The primary objective is to mini-
mize daily electricity costs within Electric Water Heater by
optimizing both Demand Response (DR) strategies and self-
consumption. Our proposed algorithm efficiently sched-
ules tasks for a variety of manageable electrical loads,
encompassing Time-Shiftable Appliances, Temperature-
Controlled Appliances, and Programmable Switching Ap-
pliances. To enhance the accuracy of Photovoltaic (PV)
power output prediction, our HEMS integrates a solar model
designed for tilted PV arrays. This integration enables the
HEMS to translate solar radiation forecasts into precise es-
timates of PV power output, accounting for variables such
as array tilt angle and outdoor temperature impact on power
generation efficiency.
The pivotal advancement of this research lies in the fusion
of a smart thermostat into the framework of a Home Energy
Management System (HEMS). Departing from the conven-
tional thermostat paradigm, which relies on fixed set-points,
the innovative approach proposed here adopts a fuzzy logic-
based smart thermostat. This dynamic thermostat adjusts its
set-point in real-time, responding to a spectrum of evolving
conditions including fluctuating electricity prices, varying
solar radiation levels, and the presence of occupants within
the premises. What sets this system apart is its ability to de-
lineate distinct set-points for each temporal interval, thereby
offering a nuanced and adaptable approach to Demand Re-
sponse (DR) for Electric Water Heater operation. By seam-
lessly integrating the smart thermostat within the overarch-
ing HEMS infrastructure, it transcends the conventional no-
tion of the thermostat as a standalone device. Instead, it



becomes an intrinsic element of the holistic energy manage-
ment ecosystem.
This integration yields manifold benefits. Firstly, it ensures
that the EWH’s participation in day-ahead optimization
is harmoniously synchronized with other electrical loads
present within the household. Consequently, the allocation
of stored solar energy among various appliances is opti-
mized, while simultaneously adhering to predefined peak
power constraints. In essence, by ingeniously melding
cutting-edge thermostat technology with the overarching
HEMS framework, this study pioneers a comprehensive and
highly efficient approach to residential energy management.
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C. Pérez-Molina, and M. Castro. Smart grid: Assess-
ment of the past and present in developed and devel-
oping countries. Energy Strategy Reviews, 18:38–52,
2017.

[7] International Energy Agency (IEA) (2019).
https://www.iea.org/data-and-statistics/charts/shares-

of-residential-energy-consumption-by-end-use-in-
selected-iea-countries-2019. iea.org.

[8] Marc Beaudin and Hamidreza Zareipour. Home en-
ergy management systems: A review of modelling and
complexity. Renewable and Sustainable Energy Re-
views, 45:318–335, 2015.

[9] Fernando Lezama, Joao Soares, Bruno Canizes, and
Zita Vale. Flexibility management model of home ap-
pliances to support dso requests in smart grids. Sus-
tainable Cities and Society, 55:102048, 2020.

[10] Azim Keshtkar and Siamak Arzanpour. An adaptive
fuzzy logic system for residential energy management
in smart grid environments. Applied Energy, 186:68–
81, 2017.

[11] Nima Alibabaei, Alan S. Fung, Kaamran Raahemifar,
and Arash Moghimi. Effects of intelligent strategy
planning models on residential hvac system energy de-
mand and cost during the heating and cooling seasons.
Applied Energy, 185:29–43, 2017.

[12] American Society of Heating and Air-Conditioning
Engineers. https://www.ashrae.org/about.

[13] Farhad Omar, Steven T. Bushby, and Ronald D.
Williams. A self-learning algorithm for estimating
solar heat gain and temperature changes in a single-
family residence. Energy and Buildings, 150:100–110,
2017.


	Introduction
	Objectives
	Contributions
	Dynamic Voltage and Frequency Scaling (DVFS)

	Dynamic Power Management (DPM)
	Energy Efficient Load Balancing
	Predictive Energy-aware Scheduling


	Ensuring IoT devices operate with minimal energy consumption
	Challenges
	Case Study
	Smart Thermostats
	Current Focus


	Conclusion

