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ABSTRACT
Creating bots that play games or performing similar tasks has
become an increasingly popular area of research. Tradition-
ally, these bots need to have access to the code or back-end
of their target task in some way. In this paper, we present a
parser which is capable of breaking down a KenKen board
from an image on a screen to a representation that an Artifi-
cial Intelligence (AI) could use to play the game - somewhat
emulating the way that a human breaks down an image of a
KenKen puzzle into a representation that allows their brain to
solve it. We believe that this is an important step towards be-
ing able to create bots that can play games or perform similar
tasks for situations in which it is impractical or impossible to
have direct access to the game/task via traditional methods.

1 Introduction

The game of KenKen is a grid-based puzzle game. In a way,
it is of similar spirit to Sudoku, but a step up in complex-
ity. As such, the game of KenKen has features that make it
harder to algorithmically parse than other grid-based games
like Minesweeper or Sudoku. We will now describe the game
of KenKen in detail, for any readers who may be unfamiliar
with it or need a refresher on how the game works.

1.1 The Game of KenKen

In the super popular game of Sudoku, a user must place the
numbers 1 through 9 onto a grid, only using each number
once in each row, column, and 3x3 ”region”. KenKen, shown
in Figure 1, is a similar sort of game but adds an extra layer
of game mechanics. Each number must be used once per row
and once per column, as with Sudoku. However, there are no
fixed-size ”regions” of any sort. This allows KenKen to have
board sizes, such as 5x5, that don’t really make sense for Su-
doku. Furthermore, in Sudoku, some of the numbers are filled
in as clues. In KenKen however, the clues take the form of a
series of ”cages” that enclose some of the grid cells. All cages
have a number associated with them. Some of them only en-
close a single cell and do not have an operation - essentially
just giving you a number on the board. Most cages, however,
have an associated math operation. These operations are as
follows:

Figure 1: An example 5x5 KenKen board. The yellow square is just
the one that the user has selected to enter a value.

• Addition - If you add all of the cells together, the result
must be the number associated with the cage.

• Multiplication - If you multiply all of the cells together,
the result must be the number associated with the cage.

• Subtraction - If you subtract the smaller number from the
larger number, the result must be the number associated
with the cage.

• Division - If you divide the larger number by the smaller
number, the result must be the number associated with
the cage.

Note that for all cages, the numbers can be in any order. For
example, for the cage labeled 6X on the left edge of the board
in Figure 1 has to contain a 2 and a 3, but they can be in
either order. The rows and columns then need to be used to
determine which number is in which position.

In the 5 x 5 board shown in Figure 1, the largest cage is 3 cells
large. Although the subtraction and division cages are always
just 2 cells in size, the multiplication and addition cages can
be considerably larger. In the 9 x 9 board shown in Figure
2, notice that there is a cage in the bottom left that is labeled
3240X and contains 6 cells. These large and oddly-shaped
cages make parsing a KenKen board much more difficult,
which we will now discuss.
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Figure 2: An example 9x9 KenKen board. The yellow square is just
the one that the user has selected to enter a value.

1.2 A Brief Discussion on Creating AI

The goal of this work is to create a parser for a KenKen board,
to take it from an image on a computer screen to a back-end
representation that scripted solver and/or machine learners
could use to solve a KenKen board. Typically, there are two
ways to write an artificial intelligence, or AI, for a game. The
first is to somehow tap into the game’s code or data. There are
some games where people have created ways to do this (for
example, Starcraft II [1]), but they are in the vast minority.
There are also some games with Application Programming
Interfaces (or APIs), that are essentially a built-in way to in-
teract with the game; however, these are also relatively very
rare. As such, this would have to be done by the person mak-
ing the AI. Not only would this take a lot of time before the AI
can even be started, but it isn’t feasible at all in some cases.

The second option is to completely re-implement the game.
KenKen is a relatively simple game, so it would be feasible to
do so. However, it would take many hours of work before the
main focus, the creation of an AI, could even be attempted.
Additionally, many games take entire teams of programmers
months or years to complete - there’s no way a single or small
team of researchers could feasibly recreate it in any reason-
able amount of time.

As such, there needs to be a way to give access to these games
to an AI solver without employing either of these methods.
The main focus of our paper is taking an important step in that
direction by creating an internal representation of a KenKen
board using only an image of one on the screen. Not only
would this allow the community to create a solver without
any access to KenKen’s code, an API, or recreating the game,
but it would also to an extent mimic the way that humans
would solve the boards. In fact, by parsing the board visually,

Figure 3: An 5x5 KenKen board with the intersections marked.
These intersections are pivotal in parsing the board.

we are solving it under the same constraints that a human has
to face. In the end, we are able to create a parser that outputs
a representation of a KenKen board that a solver would then
be able to use to play the game.

We start this paper by talking about some of the related work
in this area in Section 2. Next, we discuss exactly how the dif-
ferent elements of the KenKen board were parsed in Section
3. Finally, we end with conclusions, limitations, and ideas for
future work in Section 4.

2 Related Work

As far as we are aware, no attempt to visually parse a KenKen
board from an image into a more usable representation has
been done in the literature, but some work with parsing games
has been done and some KenKen solvers have been made.

2.1 Parsers

The idea of visually parsing a game to create a solv-
able representation of that game is relatively new. In
the past, similar techniques have been used to parse the
games of MineSweeper[2] and Rullo[3]. Unlike KenKen,
Minesweeper is very straightforward, because it is a nice, neat
grid with no additional features. Rullo is a little more compli-
cated, adding row and column labels as well as double digit
numbers into the mix, but KenKen is much trickier due to the
cages on the grid (discussed in Section 1.1).

There are also some machine learning domains that rely on
the visuals of a game, such as the Arcade Learning Environ-
ment (ALE) [4]. This domain works by using the individual
pixels of a simulated Atari 2600 as the features for learning,



whereas we attempt our task by searching for pre-specified
images on the computer screen. Additionally, KenKen is not
an Atari game so it falls outside the scope of that library, and it
has a much higher resolution than Atari games, which would
make reconstructing the board pixel by pixel an extremely
arduous task. Furthermore, using visual parsing for scripted
AIs is not well represented in the literature.

2.2 Solvers

There are multiple instances in the literature of KenKen
solvers. For example, Gerlach solves the problem by find-
ing all of the viable sets that could be in the cages, and then
finds the combination of them which solves the puzzle [5].
Others have used Hybrid Genetics Algorithms [6], Hopfield
neural networks [7], or integer programming [8]. However,
none of these solvers visually parse the board. Although not
specified, they most likely use pre-encoded KenKen boards.

3 Parsing The Board

Traditionally, most AIs for games are written in one of two
ways. The first method is that the game’s source code is
found, ported, or rewritten (such as with MochaDoom [9] or
the Super Mario version used in the 2009 Mario Artificial In-
telligence Competition [10] ). The second method is to read
the program’s memory to figure out key values, and then edit
those values or inject code into the running program to send
commands [11]. However, each of these has limitations. For
the former, a researcher would have to either find the source
code or essentially re-write it themselves before they could
get started on creating an AI for the game, which can easily
take more time than creating the AI itself in many cases. For
the latter, hacking into the memory and finding out bit by bit
(or rather, byte by byte) what values correspond to what the
researcher wants to know can be a very time-intensive task,
and directly interacting with a program’s memory is a very
difficult task. As such, there are many tasks for which neither
of these methods are very feasible.

Rather, it is valuable to be able to visually parse a game, tak-
ing it from a visual representation meant for humans to a data
representation that could be used to solve the game. By do-
ing so, we can enable the creation of AIs that can play a game
without having to recreate the game itself. KenKen is a par-
ticularly interesting example, as the way the cages and values
are arranged make it much more complicated to parse pro-
grammatically than a grid-based game such as Minesweeper.

3.1 PyAutoGui

The main tool used to this end was a Python library known as
PyAutoGui [12]. This library allows for simple GUI-related
tasks, such as typing keys from the keyboard or clicking a
position on the screen. The most important function for this
work, however, was PyAutoGui’s locateAll() function. This

Figure 4: The 11 types of markers that can be found at intersections.

function searches for an image on the screen. It then returns
the coordinates and size of all images that matched, as a 2D
list. Although it has disadvantages (see Section 4.1 for more
details), it is a very powerful tool for this purpose.

3.2 Parsing the Grid Structure

The first, and hardest, aspect of parsing the game board is
parsing the grid of cages. As seen before, the cages are all
randomly sized and shaped. A first instinct in how to ap-
proach this would be to have images of each cage, and search
for those. However, there are far too many possibilities for
it to be done this way - the image would have to include the
number and operation as well, and each image that we search
for has to be taken by hand via screenshots.

Instead, the strategy we chose is to not look at the cage them-
selves, but at the intersections between squares of the grid, as
shown in Figure 4. When looking at it this way, there are 11
possible ”markers”:

• Line - Has lines on 2 opposite sides of the intersection
point. Can be horizontal or vertical.

• Corner - Has lines on 2 adjacent sides of the intersection
point. Can be in one of 4 rotations.

• Ts - Has lines on 3 sides of the intersection point. Can
be in one of 4 rotations.

• Cross - has lines on all 4 sides of the intersection point.

However, there is a catch. The bottom and right edges of the
board have a very thin line running through them. Visually,
this makes almost no difference. However, it does completely
throw off the image matching. As such, some markers have
2 or 3 different variants. All in all, 22 images of markers had
to be taken and cropped by hand. These images were then
sorted into 11 lists, one for each of the marker types above.

This means that we now have unsorted lists for each marker.
However, to have them represent the board, we need to know
where each marker is. To do this, we first find the corner that
is in the top left of the board, by finding the one with the low-
est x and y coordinate. We also find the width of the board
in pixels, by finding the bottom right corner as well, and sub-
tracting its x-value by the top-left corner’s x-value. We then
divide the width in pixels by the number of grid squares wide
the board is, which gives us how wide far apart the markers
are on the board. This process is illustrated in Figure 5.



Figure 5: An illustration of calculating the height and width of the
board using only the pixel coordinates of the top-left corner (TL)
and bottom-right corner (BR).

Once we have that, we are ready to create our grid of markers,
as a 2D list. We create a 2D list that is 1 larger than the
size of the game board. For example, if the board is 5x5,
we create a 6x6, because there is always one more marker
per row/column than there are grid squares. Now we have
11 lists of markers with pixel positions, but we need to figure
out where in our 2D list each of those markers should be.
To do this, we first subtract the x-coordinate of the top left
marker (TL) from the x-coordinate of the current marker we
are examining (marker). We then divide by how far apart
markers are on the board (spacing) and round to the nearest
whole number. We then do the same thing with the ys, as seen
in the formulas below:

• i = round( ( marker.x - TL.x) / spacing)
• j = round( ( marker.y - TL.y) / spacing)

The values of i and j are then used as indices into the 2D list.
A string is stored at that location to indicate which of the 11
markers it is. At this point, we have a 2D list of markers. An
example of this is shown in Figure 6.

In order to turn this into a meaningful representation, we then
have to employ a key insight. When looking at a square on

Figure 6: An image of the markers placed into a 2D (right) next to
the board (left). Lines are {H,V}, corners are {BL,TL, TR, BR}, Ts
are {U,R,D,L} and crosses are {C}.

Figure 7: An examination of the top left cell. Marker A is a hori-
zontal line, so there is no line between this square and the square to
the right of it, meaning they must be in the same cage. Marker B is
a T facing right, so there is a line between the top left square and the
square below it, meaning they are not in the same cage.

the grid, we can use the markers around the square to tell
whether each of the squares in the 4 cardinal directions are
part of that same cage or not! For example, take the top left
square in Figure 7. If we look at marker A, it is a horizontal
line. This means that the square to the right is in the same
cage, because there is no line dividing them. If we look at
the marker labeled B, it is a T facing to the right. This means
there is a line between the top left square and the square below
it, and therefore those squares are not part of the same cage.

We then repeat this process for each new square that we found
to be in the same cage, in flood-fill-esque manner. Once we
have found every square in the same cage, we give it a number
as a unique identifier. We then repeat this process for each
square on the grid, but if a square has already been assigned
to a cage then we skip over it. We write the resulting cage
numbers into a 2D list the same size as the game board. The
result is a representation of the cages that could be worked
with by a solver, as shown in Figure 8, next to the board it
represents (which is the same one we’ve been using, but put
here again for ease of comparison).

Figure 8: An image of how the cages are represented in our 2D list
(right) next to the board it represents (left). Positions with the same
number indicate board squares that are in the same cage.



Figure 9: The representation of the cages (left), operations (middle),
and values (right) for a KenKen board.

3.3 Parsing the Operations

The hardest part is done, but we still need to get the num-
ber and operation associated with each cage. The process for
both of these is very similar. First, we parse the screen for the
4 math operators (addition, subtraction, multiplication, and
division), and sort them into lists. Next, we use the same for-
mula as we did with the markers, to find out what grid square
that operator is. We can then use our 2D list of cages to de-
termine to which cage that operator belongs. We store this as
a list of pairs, with the cage number and the corresponding
operation. One thing to note is that it’s possible for a cage to
have no operation, if it is only 1 square large. In this case, we
store the operator as None. A visual example of this repre-
sentation can be seen in Figure 9, again using the same board
as before. Notice that we have the cage number and the cor-
responding operation implemented as a list of pairs.

3.4 Parsing the Numbers

Finally, we need to get the numbers associated with each
cage. This process is very similar to the operations, but with
one catch - numbers can be more than one digit! As such, we
need a way to ”reconstruct” the numbers. To do this, we fol-
low the same process as the operations, but instead of just 1
thing, we might get multiple numbers for the same cage! As
such, we store these numbers in a list, in no particular order.

Once we have the lists of numbers for all of the cages, we loop
through the cages one at a time. We sort the list of numbers
for each cage according to their x location on the screen in
pixels. We then make the farthest right value be the ones
place, the next farthest right be the 10s place, and so on until
we have consumed all of the numbers. This gives us the true
value stored in that cage. An example of this representation
is also in Figure 9, and consists of the cage number and the
value associated with that cage, as with the operations.

3.5 Final Representation

We now have a final representation of our board, all shown
together in Figure 10. Our 2D list tells us which cage each

Figure 10: A final representation of a KenKen board, combining the
cages, operations, and numbers all into one.

grid square is in, and the two lists tell us the number and
operation for those cages. As such, we have everything we
could possibly need to create a solver for the board, and our
visual parsing of a KenKen board is complete.

Note that our parser works for any size of KenKen board, as
long as it fits on one screen and all of the correct images to
search for have been acquired and saved.

4 Conclusions

In conclusion, there is value in being able to visually parse
what is on a computer screen and turn it into a representation
that is usable by a computer program. One contemporary ap-
plication of this is writing AI solvers for video games. Both
traditional methods of writing an AI - recreating the game or
somehow accessing the source code or data of the game, can
be quite arduous and are not feasible in many cases. Instead,
we can visually parse some games and then have an AI work
with the extracted representation.

This work is an important step in that direction. De-
spite KenKen being a grid-based puzzle game with easy-
to-understand rules, visually parsing it algorithmically is a
is a somewhat complex problem, and we hope that insights
gained from doing so will lead to the visual parsing of more
and more complex games.

4.1 Limitations

PyAutoGui is a great tool for our purposes, but it does have
some limitations. First, it requires very precise matches. This
often leads to having to take multiple images of what is log-
ically the same thing. For example, the KenKen board has
a line on the bottom and a line on the right, as discussed in
Section 3.2. This causes us to need two different images of
each marker that could appear on the bottommost or right-
most edge of the board. Additionally, some of the markers
are different sometimes for no apparent reason. For example,
if you look back to Figure 2, notice that the top left of the 60X



Figure 11: An illustration of more complicated tiling in games. On
the left is a plains tile with no mountain under it. In the center is
a mountain tile (notice how the entire mountain does not fit on the
tile), and on the right is a plains tile that has a mountains tile below
it. On a 16x15 tile map, a total of 148 individual tiles were identified
due to these combinations, before factoring in that a variety of units
could be placed on each tile, leading to a very high tiling complexity.

cage in the bottom right appears to be partially missing. Each
of these little differences requires more separate images to
be able to correctly capture the board. In this case, it turned
what should have been 24 separate images into 35 separate
images. This is doable, but in some cases it could increase
the number of images tenfold or more and become a serious
issue. Furthermore, for the 9x9 board, all of the images had to
be completely retaken, because they are smaller and in some
cases proportioned differently.

In addition, PyAutoGUI is very slow, sometimes taking a sec-
ond or more to search the screen for a single image. PyAu-
toGUI does have an option to only search part of the screen,
but as previously shown in the literature [13], it doesn’t make
a significant difference in practice. For puzzle games, board
games, etc., incredibly slow parsing is acceptable. For real-
time games, another method may need to be employed, or
else the situation will change by the time it is parsed.

Finally, some games just tile in a ”non-regular” way. For
example, some games such as Advance Wars perform more
complicated tiling. This game has plains tiles and mountains
tiles. If a mountains tile is right below a plains tile, it changes
the plains tile (See Figure 11). This leads to some games ei-
ther having far more tiles than one can reasonably encode. In
other games, such as Creeper World 2, the tile for the same
object can sometimes be different heights (See Figure 12).

4.2 Future Work

The most obvious area of future work would be to write a
solver that uses our representation of the game, to measure
the true usability of our representation - even though it con-
tains everything that is needed, is there a better way to store
it? Another exciting area of future work would be to continue

Figure 12: Another illustration of more complicated tiling. This is
a set of 4 rocks from Creeper World 2. The right image, which has
an overlay put on it, indicates that the top two rock tiles in black
are smaller than the bottom two rock tiles in red (23 versus 24 pixels
tall). This irregularity makes visually parsing the game much harder.

parsing more and more complicated games into representa-
tions that can then be worked with by programs. Hooking
our visual parser into a machine learning algorithm and see-
ing if we can train a learner to play KenKen would also be
an interesting endeavor. We would also like to explore the
idea of making a more robust visual parser that is either faster
than PyAutoGui or can handle irregularities much more eas-
ily. Finally, we would like to be able to parse puzzles that
were scanned into a computer - a far more complex problem.
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