
LINDENMAYER SYSTEMS AND THEIR COMPLEXITY: A BRIDGE
BETWEEN COMPUTER SCIENCE AND DEVELOPMENTAL BIOLOGY

Jingnan Xie
Millersville University of Pennsylvania, Computer Sciences Department

jingnan.xie@millersville.edu

ABSTRACT
Lindenmayer systems (L systems) are parallel rewriting sys-
tems that were originally introduced in 1968 to model the de-
velopment of multicellular organisms [1]. Since then, var-
ious types of L systems have been developed and their ap-
plications are widely discussed. The impacts of L systems
are on many areas including computer science, developmen-
tal biology, computer graphics, and abstract algebra. In this
paper, sufficient conditions for a language predicate con-
cerning L systems to be as hard as the universality problem
(“= {0, 1}∗”) are presented. By applying these conditions,
we develop a uniform method to show undecidability and
complexity results for many problems on L systems simul-
taneously via highly efficient many-one reductions. These
problems include equivalence and containment problems of
several types, and language class comparison problems (e.g.,
does an arbitrary regular expression or context-free grammar
generate an L system language?). These problems are im-
portant in the interdisciplinary study of computer science and
developmental biology.

1 Introduction

Lindenmayer systems (L systems) are parallel rewriting sys-
tems that were originally introduced by Aristid Lindenmayer
in 1968 to model the development of multicellular organ-
isms [1]. Figure 1 is a tree structure created by an L system
after several recursions.

Two main features brought about by the theory of L systems
are

1. parallelism in the rewriting process, due to that lan-
guages were applied to model biological development in
which parts of the developing organism change simulta-
neously;

2. the notion of a formal grammar conceived as a descrip-
tion of a dynamic process.

The latter feature makes L systems an important research
topic in theoretical computer science. Since then, various
types of L systems have been developed such as 0L, D0L,
T0L, E0L, EDT0L, and ET0L systems (formal definitions are

Figure 1: A “tree” generated by an L system

introduced in Section 2 of this paper), and their applications
are widely discussed (for example, see [2] and [3]). The com-
putational complexity of problems concerning L systems is
also an important research topic in both theoretical computer
science and developmental biology. For example, the mem-
bership and emptiness problems of E0L, ET0L, and EDT0L
systems are discussed in [4], and the context-freeness, regu-
larity, and 0L-ness1 problems for E0L systems are shown to
be undecidable in [5]. However, to our best knowledge, the
0L-ness problems for regular languages and context-free lan-
guages are still open due to very weak closure properties of
0L systems.

In this paper, sufficient conditions for a language predicate
concerning L systems to be as hard as the universality prob-
lem (“= {0, 1}∗”) are presented. By applying these condi-
tions, we develop a uniform method to show undecidability
and complexity results for many problems on L systems si-
multaneously via highly efficient many-one reductions. For
example, using the same proof, we show that the 0L-ness
problem for (∪, ·, ∗)-regular expressions is PSPACE-hard,
and for context-free grammars is undecidable. These results

10L-ness problem is to ask whether a language is a 0L language.

mailto:jingnan.xie@millersville.edu

are very important for interdisciplinary research in theoreti-
cal computer science and biology. The equivalence and con-
tainment problems for L systems are also studied in this pa-
per. We investigate the problems of testing equivalence and
containment to many fixed languages since these results are
stronger and have more practical meanings. For example, we
show that for any fixed unbounded regular set R0, the pred-
icates “= R0” and “⊇ R0” are undecidable for EDT0L sys-
tems. This also shows that there is no approximating min-
imization algorithm between EDT0L systems and DFA ac-
cepting this fixed regular set R0.

This paper is organized as follows.

In Section 2, we review the definitions of several widely dis-
cussed L systems. Some preliminary definitions and nota-
tions are also explained.

In Section 3, we study and summarize the complexity of the
universality problem (“= {0, 1}∗”) for several classes of lan-
guage descriptors.

In Section 4, sufficient conditions are given for a lan-
guage predicate to be as hard as the language predicates
“= {0, 1}∗”. These conditions yield a method to prove com-
plexity results through highly efficient many-one reductions
for L systems. Section 4.1 discusses the language class com-
parison problems. In Section 4.2, we study the equivalence
and containment problems concerning L systems.

2 Definitions and Notations

In this section, we review the definitions of several types of
L systems from [5]. A stronger form of non-recursive enu-
merability called productiveness and its importance are dis-
cussed. Several preliminary definitions and notations in lan-
guage theory are also explained. The reader is referred to [6]
for all unexplained notations and terminologies in language
theory.

We use λ to denote the empty string and ∅ to denote the empty
set. We use N to denote the set of natural numbers. Let
P denote the class of sets that can be recognized in polyno-
mial time by a deterministic Turing Machine. Let PSPACE
denote the class of sets that can be recognized using poly-
nomial space by a Turing Machine. Let NEXPTIME de-
note the class of sets that can be recognized in exponential
time by a non-deterministic Turing Machine. We use Co-
NEXPTIME to denote the set of the complements of the lan-
guages in NEXPTIME. If A is many-one reducible to B, we
write A ⩽m B; If this reduction is polynomial-time bounded,
we write A ⩽ptime B.

Let D be a class of language descriptors that describe lan-
guages over Σ. In this paper, we only consider finite
Σ. Then, ∀d ∈ D, L(d) = {w ∈ Σ∗ | w is de-
scribed by d} and L(D) = {L ⊆ Σ∗ | ∃d ∈ D such
that L = L(d)}. ∀d ∈ D, let |d| denote the size of

d. The size of a context-free grammar is the number of
symbols of all its productions. For example, the follow-
ing context-free grammar d accepts the language {0, 1}∗.
d = ({s1}, {0, 1}, {(s1, 0s1), (s1, 1s1), (s1, λ)}, s1). The
size of d is 8 (denoted by |d| = 8).

A language class comparison problem is defined as follows:
for two classes of language descriptors D1 and D2, determine
for any a ∈ D1, whether L(a) ∈ L(D2)?
Definition 1. An non-deterministic 1-reversal bounded 1-
counter machine (denoted by N 1-rbd 1-CM) is a push-
down automaton where the cardinality of the stack alphabet
is two(including the bottom symbol) and the machine makes
at most one single reversal on the stack. Hence, the class of
languages accepted by N 1-rbd 1-CMs is a proper subset of
linear context-free languages. Throughout the paper, we use
N11CM to denote the set of N 1-rbd 1-CMs with input alpha-
bet {0, 1}.
Definition 2. A finite substitution σ over alphabet Σ is a
mapping of Σ∗ into the set of all finite nonempty languages
(possibly over another alphabet ∆) defined as follows. For
each letter a ∈ Σ, σ(a) is a finite nonempty language,
σ(λ) = {λ} and for all w1, w2 ∈ Σ∗,

σ(w1w2) = σ(w1)σ(w2).

For any language L over Σ, σ(L) =
⋃

∀w∈L

σ(w).

If ∀a ∈ Σ, λ ̸∈ σ(a), the substitution σ is referred to as
λ-free or non-erasing. If each σ(a) contains a single string,
σ is called a morphism.

In this paper, we only consider L systems over the terminal
alphabet {0, 1}. This restriction has been taken into account
in the following definitions.
Definition 3. A 0L system is a triple G = ({0, 1}, σ, s) where
σ is a finite substitution over {0, 1} and s ∈ {0, 1}∗ is the
axiom. The 0L system G generates the language

L(G) = {s} ∪ σ(s) ∪ σ(σ(s)) ∪ ... =
⋃
i≥0

σi(s).

A 0L system is deterministic or a D0L system if and only if σ
is a morphism.

The letter E (“extended”) in the name of an L system means
that the use of nonterminals is allowed. Thus, an E0L system
is a 0L system augmented with nonterminals.
Definition 4. An E0L system is a 4-tuple G =
({0, 1}, V, σ, s) where V is the set of nonterminals (disjoint
with {0, 1}), σ is a finite substitution over V ∪ {0, 1} and
s ∈ (V ∪{0, 1})∗ is the axiom. The E0L system G generates
the language

L(G) =
⋃
i≥0

σi(s) ∩ {0, 1}∗.

An E0L system is deterministic or a ED0L system if and only
if σ is a morphism.

The letter T (“table”) in the name of an L system means in-

stead of having one finite substitution, the system has a finite
number of finite substitutions.
Definition 5. A T0L system is a triple G = ({0, 1}, P, s)
where P is a finite set of finite substitutions such that for each
σ ∈ P , ({0, 1}, σ, s) is a 0L system. For a T0L system G =
({0, 1}, P, s),

1. let X = x1x2...xk (k ≥ 1) where xi (1 ≤ i ≤
k) ∈ {0, 1}. Let σ be a finite substitution in P and
let Y ∈ {0, 1}∗. We write X →σ Y if there exists
y1, y2, ..., yk ∈ {0, 1}∗ such that yi ∈ σ(xi) (1 ≤ i ≤
k) and Y = y1y2...yk. We write X →P Y if there exists
σ ∈ P such that X →σ Y ;

2. →∗
P denotes the transitive and reflexive closure of the

binary relation →P ; and
3. L(G) = {w ∈ {0, 1}∗ | s →∗

P w}.

An ET0L system is a 4-tuple G = ({0, 1}, V, P, s) where V is
the set of nonterminals (disjoint with {0, 1}), P is a finite set
of finite substitutions over V ∪ {0, 1} and s ∈ (V ∪ {0, 1})∗
is the axiom. For a ET0L G = ({0, 1}, V, P, s),

1. let X = x1x2...xk (k ≥ 1) where xi (1 ≤ i ≤ k) ∈
(V ∪ {0, 1}). Let σ be a finite substitution in P and
let Y ∈ (V ∪ {0, 1})∗. We write X →σ Y if there
exists y1, y2, ..., yk ∈ (V ∪{0, 1})∗ such that yi ∈ σ(xi)
(1 ≤ i ≤ k) and Y = y1y2...yk. We write X →P Y if
there exists σ ∈ P such that X →σ Y ;

2. →∗
P denotes the transitive and reflexive closure of the

binary relation →P ; and
3. L(G) = {w ∈ {0, 1}∗ | s →∗

P w}.

An ET0L system is deterministic or an EDTOL system if ev-
ery finite substitution in P is a morphism.

For a better understanding of these definitions, we give sev-
eral examples here.
Example 2.1. Let the D0L system G = ({0, 1}, h, 01) with
h(0) = {0} and h(1) = {01}.
Hence, h(01) = {001}, h(h(01)) = {0001}, h(h(h(01))) =
{00001}, ...
Then, L(G) = {0n1 | n ≥ 1}.
Example 2.2. Let the 0L system G = ({0, 1}, h, 0) with
h(0) = {λ, 1, 0, 00, 01} and h(1) = {1, 10, 11}. Then
L(G) = {0, 1}∗.
Example 2.3. Let the EDT0L system G =
({0, 1}, {A,B,C,D}, P, CD) where P = {h1, h2, h3}
and
h1(0) = {0}, h1(1) = {1}, h1(A) = {A}, h1(B) = {B},
h1(C) = {ABC}, h1(D) = {DA};
h2(0) = {0}, h2(1) = {1}, h2(A) = {A}, h2(B) = {B},
h2(C) = {CB}, h2(D) = {D};
h3(0) = {0}, h3(1) = {1}, h3(A) = {0}, h3(B) = {1},

h3(C) = {λ}, h3(D) = {λ}.
Then L(G) = {0n1m0n | n ≥ 0, m ≥ n}.

The following figure shows the relationship between several
classes of languages discussed in this paper. REG, Lin-CFL,
and CFL denote the class of regular languages, linear context-
free languages, and context-free languages respectively. In
this figure, A → B means B properly contains A and if no
line between A and B, it means A and B are incomparable.

Figure 2: Relationship between Several Classes of Languages

Productive sets and their properties are a standard topic in
mathematical logic/recursion theory textbooks such as [7]
and [8]. Productiveness is a recursion-theoretic abstraction
of what causes Gödel’s first incompleteness theorem to hold.
Definition 6 recalls the definition of a productive set on N, as
developed in [7].
Definition 6. Let W be an effective Gödel numbering of the
recursively enumerable sets. A set A of natural numbers is
called productive if there exists a total recursive function f
so that for all i ∈ N, if Wi ⊆ A then f(i) ∈ A − Wi. The
function f is called the productive function for A.

From this definition, we can see that no productive set is re-
cursively enumerable. It is well-known that the set of all prov-
able sentences in an effective axiomatic system is always a
recursively enumerable set. So for any effective axiomatic
system F , if a set A of Gödel numbers of true sentences in F
is productive, then there is at least one element in A which is
true but cannot be proven in F . Moreover, there is an effec-
tive procedure to produce such an element.

Let W be an effective Gödel numbering of the recursively
enumerable sets. K denotes the set {i ∈ N | i ∈ Wi}. K
denotes the set {i ∈ N | i ̸∈ Wi}. Two well-known facts

of productive sets (see [7]) that are necessary for the research
developed here are as follows:
Proposition 1. 1. K is productive.

2. For all A ⊆ N, A is productive if and only if K ≤m A.

The following proposition is proved in [9] and is used to
prove productiveness results. It also shows in which way the
productiveness is stronger than non-recursive enumerability,
i.e., every productive set A has an infinite recursively enu-
merable subset, and for any sound proof procedure P, one can
effectively construct an element that is in A, but not provable
in P.
Proposition 2. Let A ⊆ Σ∗, B ⊆ ∆∗, and A ≤m B. Then,
the following hold:

1. If A is productive, then so is B.
2. If A is productive, then there exists a total recursive

function Ψ : Σ∗ → Σ∗, called a productive function
for A, such that for all x ∈ Σ∗,

L(Mx) ⊆ A ⇒ Ψ(x) ∈ A − L(Mx), where
{Mx | x ∈ Σ∗} is some Gödel-numbering of
Turing machines over alphabet Σ.

3. If A is productive, then A is not recursively enumerable
(RE). However, A does have an infinite RE subset.

3 The Universality Problem

The widely discussed universality problem (“= {0, 1}∗”)
plays an important role in this research. Therefore, in this sec-
tion, we study and summarize the complexity of “= {0, 1}∗”
for several classes of language descriptors. To make our re-
sults stronger and more applicable, we investigate the com-
plexity of a restricted version of “= {0, 1}∗”:

testing equivalence to {0, 1}∗ for languages whose
complements’ cardinalities are less than or equal to
one (denoted by “= {0, 1}∗ ||Lc|≤1”).

The instances of this restricted predicate have very important
semantic properties: they are the simplest regular sets. These
restrictions make the predicate more widely applicable: for
example, they directly apply to promise problems, predicates
on regular sets, and descriptional complexity of language de-
scriptors.

In [9], the predicate “= {0, 1}∗ ||Lc|≤1” is shown to be pro-
ductive for N 1-rbd 1-CMs. And it is easy to see that EDT0L,
E0L, and ET0L systems efficiently contain linear context-free
grammars. Hence, for EDT0L, E0L, and ET0L systems, the
predicate “= {0, 1}∗ ||Lc|≤1” is also productive, hence, non-
recursively enumerable. Theorem 3.1 summarizes this result.

Theorem 3.1. There exists a subset D of N11CM({0,1})
(EDT0L({0,1}), E0L({0,1}), or ET0L({0,1})) such that

1. D ∈ P;
2. ∀d ∈ D, L(d) ⊆ {0, 1}∗ and |{0, 1}∗ − L(d)| ≤ 1; and

3. K ⩽ptime {d | d ∈ D, L(d) = {0, 1}∗}, hence, it is
non-recursively enumerable.

The following theorem is from [10] and shows that the predi-
cate “= {0, 1}∗ ||Lc|≤1” is PSPACE-hard for (∪, ·, ∗)-regular
expressions.
Theorem 3.2. There exists a subset R of REG({0,1}) such
that

1. R ∈ P;
2. ∀d ∈ R, L(d) ⊆ {0, 1}∗ and |{0, 1}∗ − L(d)| ≤ 1; and
3. PSPACE ⩽ptime {d | d ∈ R, L(d) = {0, 1}∗}.

Besides the universality problem, our proof technique can
also be applied to reductions of other sources. For exam-
ple, it may be practically more relevant to only consider fi-
nite languages. One theorem in [11] states that the pred-
icate “= {0, 1, λ}2cn” is Co-NEXPTIME-hard for context-
free grammars generating finite languages. Here we state that
theorem with a slight modification. The proof is the same
as in [11]. Let CFGfin be the set of context-free grammars
over terminal alphabet {0, 1} generating finite languages.
Theorem 3.3. [11] There exists a constant c > 0 such that
Co−NEXPTIME ⩽ptime {d | d ∈ CFGfin, L(d) =

{0, 1, λ}2cn where n = |d|}.

4 Computational Complexity of L Systems

4.1 Language Class Comparison Problems

Language class comparison problems involving L systems
are studied by many groups. For example, in [5], the
context-freeness, regularity, and 0L-ness problems for E0L
systems are shown to be undecidable. However, to our best
knowledge, the 0L-ness problems for regular languages and
context-free languages are still open. The 0L-ness problem is
hard to study for mainly two reasons.

1. It is known that 0L languages and finite languages are
incomparable. Then proof techniques in [12] and [13]
do not apply to the 0L-ness problem since they require
the predicates to be true for all regular sets.

2. 0L systems are shown to be an anti-AFL [14]. So they
have almost no closure properties.

In contrast, the properties of the predicate “=
{0, 1}∗||Lc|≤1” (compared to the predicate “= {0, 1}∗”)
enable us to investigate 0L-ness problem for many classes

of languages. In this section, we develop a new method to
study the complexity/productiveness of the 0L-ness problem.
Through this method, we show the 0L-ness problem is
productive for N 1-rbd 1-CMs, linear context-free grammars,
context-free grammars, EDT0L systems, E0L systems,
and ET0L systems. Additionally, we show the 0L-ness
problem for (∪, ·, ∗)-regular expressions is PSPACE-hard
and for context-free grammars generating finite languages
is Co-NEXPTIME-hard. The following theorem is the key
result to this new method.
Theorem 4.1. For any w ∈ {0, 1}+ such that |w| ≥ 4, the
language Lw = {0, 1}∗ − {w} is not a 0L language.

Proof. Assume Lw is a 0L language, then there exists a 0L
system G = ({0, 1}, σ, s) such that L(G) = Lw.

1. If |s| = 1, let w = w1w2 where |w1| ≥ 2 and |w2| ≥ 2.
Then we know w1 ̸= s, w2 ̸= s and w1, w2 ∈ Lw.
⇒ There exist t1, t2 ∈ Lw such that w1 ∈ σ(t1) and
w2 ∈ σ(t2). ⇒ w = w1w2 ∈ σ(t1t2). If t1t2 ̸= w,
then t1t2 ∈ Lw. ⇒ w ∈ Lw ⇒ Contradiction. If
t1t2 = w, since λ ∈ Lw, there exists t3 ∈ Lw(t3 ̸= λ)
such that λ ∈ σ(t3). ⇒ w ∈ σ(t1t2t3) and t1t2t3 ̸= w.
⇒ w ∈ Lw ⇒ Contradiction.

2. If |s| > 1, let w = w1w2w3...wk where wi (1 ≤
i ≤ k) ∈ {0, 1}. ⇒ wi (1 ≤ i ≤ k) ∈ Lw.
⇒ ∃t1, t2, ..., tk ∈ Lw such that wi ∈ σ(ti) (1 ≤
i ≤ k). ⇒ w = w1w2...wk ∈ σ(t1t2...tk). If
t1t2...tk ̸= w ⇒ t1t2...tk ∈ Lw ⇒ w ∈ Lw ⇒ Con-
tradiction. If t1t2...tk = w, since λ ∈ Lw, there exists
tk+1 ∈ Lw(tk+1 ̸= λ) such that λ ∈ σ(tk+1). ⇒ w ∈
σ(t1t2...tktk+1) and t1t2...tktk+1 ̸= w ⇒ w ∈ Lw ⇒
Contradiction.

The theorem below follows directly from Theorem 3.1 and
Theorem 4.1.

Theorem 4.2. There exists a subset D of N11CM such that

1. D ∈ P;
2. ∀d ∈ D, L(d) is co-finite; and
3. for any fixed set Γ ⊆ L(0L) and {0, 1}∗ ∈ Γ,

K ⩽ptime {< d > | d ∈ D, L(d) ∈ Γ}.

Proof. Let D be the same D defined in Theorem 3.1. Then
∀d ∈ D, for any fixed Γ, if L(d) = {0, 1}∗, L(d) ∈ Γ;
otherwise, L(d) = {0, 1}∗ − {w} where |w| ≥ 4. So by
Theorem 4.1, L(d) is not a 0L language. Hence, L(d) ̸∈
Γ.

The following corollary is a corollary of this proof.

Corollary 1. The 0L-ness problem is productive for N 1-
rbd 1-CMs, linear context-free grammars, context-free gram-
mars, E0L systems, EDT0L systems, and ET0L systems.

Proof. In Example 2.2, we showed that {0, 1}∗ is a 0L lan-
guage.

Recall that the predicate “= {0, 1}∗||Lc|≤1” is PSPACE-hard
for (∪, ·, ∗)-regular expressions. So similarly, the following
theorem holds.

Theorem 4.3. There exists a subset D of REG{0,1} such
that

1. D ∈ P;
2. ∀d ∈ D, L(d) is co-finite; and
3. for any fixed set Γ ⊆ L(0L) and {0, 1}∗ ∈ Γ,

PSPACE ⩽ptime {< d > | d ∈ D, L(d) ∈ Γ}.

Corollary 2. The 0L-ness problem for (∪, ·, ∗)-regular ex-
pressions is PSPACE-hard.

One natural extension is to study 0L-ness problems for more
restricted classes of language descriptors such as context-
free grammars generating finite languages. Let CFGfin

denote the set of context-free grammars over terminal al-
phabet {0, 1} generating finite languages. Recall Theo-
rem 3.3 which is proven in Hunt et al [11]. In its proof,
the definitions of INV ALCM(w) and V ALCM(w) are
used. Let M be a nondeterministic 2cn time-bounded sin-
gle tape Turing machine for some constant c > 0. Hunt et
al constructed a context-free grammar G such that L(G) =
INV ALCM(w)∩ (∆M ∪ {λ})2c0n

for some constant c0 >
0. If M does not accept w, then L(G) = (∆M ∪ {λ})2c0n

.
Otherwise, L(G) = (∆M ∪ {λ})2c0n − V ALCM(w). It is
clear that V ALCM(w) is finite. The proof in [11] shows that
∀t ∈ V ALCM(w), |t| < 2c0n. We can efficiently code the
language L(G) into alphabet {0, 1}. The following theorem
shows that when M accepts w, the coded L(G) is not a 0L
language.

Theorem 4.4. Let L0 = {0, 1, λ}m−F for any integer m >
0 where

1. F ̸= ∅ is a finite set over {0, 1};
2. for any w ∈ F , |w| < m; and
3. L0 ̸= {0, 1}m.

Then L0 is not a 0L language.

Proof. Suppose L0 is a 0L language. Then there exists a
0L system G = ({0, 1}, σ, s) such that L(G) = L0. For
A,B ∈ {0, 1}∗, we call A ∈ σ(B) a growing rule in σ if
|A| > |B|. We call λ ∈ σ(A) a erasing rule in σ.
Observation: Any string over {0, 1} of length m is in L0.
Claim 1: There is no growing rule in σ.
Proof of Claim 1: Suppose there is at least one growing rule in
σ. Then we know w0 ∈ σ(0) or w0 ∈ σ(1) where |w0| > 1.
Hence wm

0 ∈ σ(0m) or wm
0 ∈ σ(1m). Since 0m, 1m ∈ L0,

we know wm
0 ∈ L0. Hence, there is a contradiction because

|wm
0 | > m.

Claim 2: There is at least one erasing rule in σ.
Proof of Claim 2: By claim 1, we know |s| = m where s is
the axiom. Otherwise since there is no growing rule, every
string in L0 has length < m, a contradication. Suppose there
is no erasing rule in σ, then any string in L0 has length m.
Since L0 ̸= {0, 1}m, L0 must contain at least one string of
length < m. Hence, there is a contradiction.
Proof of the theorem: For any string w ∈ F , since |w| < m,
two strings w0m−|w| and w1m−|w| are in L0. At least one
of these two strings is not the axiom s. WLOG, we as-
sume w0m−|w| ̸= s. Then there exists w′ ∈ L0 such that
w0m−|w| ∈ σ(w′).
By Claim 1, we know |w′| = m. Let w′ = w1w2 where
|w1| = |w|. From Claim 1, we have w ∈ σ(w1). From
Claim 2, λ ∈ σ(0) or λ ∈ σ(1) must be true. Then we
know w ∈ σ(w10

m−|w1|) or w ∈ σ(w11
m−|w1|). Since

w10
m−|w1|, w11

m−|w1| ∈ L0, we have w ∈ L0, a contra-
diction.

Lemma 4.1. The language L = {0, 1, λ}m for any integer
m > 0 is a 0L language.

Proof. Consider the 0L system G = ({0, 1}, σ, 1m) where
σ(1) = {0, 1, λ}. Clearly, σ(1m) contains every string
of length m over {0, 1}. Since λ ∈ σ(1), we know
λ, 1, 11, 111, ..., 1m−1 are all in σ(1m). So L(G) = L.

By Theorem 4.4, Lemma 4.1 and Theorem 3.3, we have the
following Co-NEXPTIME-hardness result.

Theorem 4.5. Co-NEXPTIME ⩽ptime {< d > | d ∈
CFGfin, L(d) is a 0L language}.

Proof. Let M be a nondeterministic 2cn time bounded single
tape Turing machine for some constant c > 0. In the proof of
Theorem 3.2 [11], a context-free grammar G is constructed
such that L(G) = INV ALCM(w) ∩ (∆M ∪ {λ})2c0n

for
some constant c0 > 0. If M does not accept w, then L(G) =
(∆M ∪ {λ})2c0n

. By Lemma 4.1, L(G) is a 0L language.
Otherwise, L(G) = (∆M ∪ {λ})2c0n − V ALCM(w). By
Theorem 4.4, L(G) is not a 0L language.

4.2 Equivalence and Containment Problems

Equivalence and containment problems for L-systems are
widely discussed and have many applications [14]. In this
section, we study several types of equivalence and contain-
ment problems for E0L systems, EDT0L systems, and ET0L
systems. These problems include testing equivalence to any
fixed language with an unbounded regular subset, testing con-
tainment of any fixed language with an unbounded context-
free subset, and testing equivalence for L-systems generating
finite languages.

The following lemma is a well-known result.

Lemma 4.2. L(EDT0L), L(E0L) and L(ET0L) are effi-
ciently closed under union, concatenation, homomorphisms,
and intersection with regular sets.

Proof. Proofs can be seen in [5].

The following definition from [15] is necessary for results in
this section.

Definition 7. A regular set R0 ⊆ {0, 1}∗ is unbounded if
and only if there exist strings r, s, x, y ∈ {0, 1}∗ such that
R0 ⊇ {r} · {0x, 1y}∗ · {s}.

By Lemma 4.2, the following results can be shown directly.

Theorem 4.6. For any fixed language L0 ∈ L(EDT0L) (or
L(E0L), L(ET0L)) having an unbounded regular subset,
K ⩽ptime {< d > | d ∈ EDT0L (or E0L, ET0L),
L(d) = L0}.
K ⩽ptime {< d > | d ∈ EDT0L (or E0L, ET0L),
L(d) ⊇ L0}.

Proof. The proof is similar to that used in [16] to show
that the predicate “= L0” is undecidable for context-free
grammars where L0 is any fixed context-free language with
unbounded regular subset. Since R0 is unbounded, there
exist r, s, x, y ∈ {0, 1}∗ such that {r} ·{0x, 1y}∗ · {s} ⊆ R0.
∀G ∈ D where D is defined in Theorem 3.1, we can
efficiently construct a N 1-rbd 1-CM H such that

L(H) = {r} · h(L(G)) · {s}

∪

R0 ∩ {r} · {0x, 1y}∗ · {s}

where h : {0, 1}∗ 7→ {0, 1}∗ is the homomorphism defined
by h(0) = 0x and h(1) = 1y. Let N ′ be the set of H .
Since R0, x, y, s and r are fixed, we can determine G from
H in polynomial time in |H|. D ∈ P ⇒ N ′ ∈ P.
If L(G) = {0, 1}∗, then L(H) = R0; otherwise,
L(G) = {0, 1}∗ − {w} ⇒ L(H) = R0 − {rh(w)s}.

Two direct corollaries from this proof are as follows:

Corollary 3. For any fixed linear context-free language L0

with an unbounded regular subset, there exists a subset D of
EDT0L (or E0L, ET0L) such that

1. D ∈ P;

2. ∀d ∈ D, L(d) is a linear context-free language; and

3. K ⩽ptime {< d > | d ∈ D, L(d) = L0}.

4. K ⩽ptime {< d > | d ∈ D, L(d) ⊇ L0}.

Corollary 4. For any fixed unbounded regular set R0, there
exists a subset D of EDT0L (or E0L, ET0L) such that

1. D ∈ P;

2. ∀d ∈ D, L(d) is regular; and

3. K ⩽ptime {< d > | d ∈ D, L(d) = R0}.

4. K ⩽ptime {< d > | d ∈ D, L(d) ⊇ R0}.

Moreover, [16] shows a method to study the complexity of the
predicate “⊇ L0” for any L0 with an unbounded context-free
subset. The following lemma is necessary for this method.

Lemma 4.3. A context-free language is unbounded if and
only if the set of its prefixes or the set of its suffixes contains
an unbounded regular subset.

Proof. Proof can be found in [15].

Theorem 4.7. For any fixed language L0 over {0, 1} having
an unbounded context-free subset,
K ⩽ptime {< d > | d ∈ EDT0L (or E0L, ET0L),
L(d) ⊇ L0}.

Proof. L0 has an unbounded context-free subset. Hence, by
Lemma 4.3 there exists a context-free language L1 ⊆ L0

where the set of L1’s prefixes or the set of L1’s suffixes
contains an unbounded regular subset. ⇒ There exist string
w, x, y ∈ {0, 1}∗ such that every string in {w}·{0x, 1y}∗ is a
prefix of some string in L1 or every string in {0x, 1y}∗ · {w}
is a suffix of some string in L1. This two cases are symmetri-
cal, we only prove the first case here. For any EDT0L system
G ∈ EDT0L, we can efficiently construct an EDT0L
system H such that

L(H) = {w} · h(L(G)) · {1y1y} · {0, 1}∗

∪

({w} · {0x0x, 0x1y}∗{1y1y} · {0, 1}∗)

where h : {0, 1}∗ 7→ {0, 1}∗ is the homomorphism defined
by h(0) = 0x0x and h(1) = 0x1y. If L(G) = {0, 1}∗,
clearly L(H) = {0, 1}∗. So L(H) ⊇ L0.
Otherwise, there exists a string t ̸∈ L(G). ⇒ wh(t)1y1y is
not a prefix of L(H). So L(H) ̸⊇ L1. ⇒ L(H) ̸⊇ L0.

In addition, we also consider equivalence problems for
L-systems generating finite languages. We use E0Lfin,
EDT0Lfin and ET0Lfine to denote the set of E0L sys-
tems generating finite languages, EDT0L systems generat-
ing finite languages, and ET0L systems generating finite lan-
guages, respectively. For any context-free grammar G ∈
CFG({0,1}), let G = ({0, 1}, V, P, s). If we add two pro-
ductions 0 → 0 and 1 → 1 to P , certainly it does not change
L(G). Then we can construct a finite substitution h such
that for any production A → B in P , B ∈ h(A). Clearly
H = ({0, 1}, V, h, s) is an E0L system and L(H) = L(G).
This shows that E0L systems and ET0L systems can simulate
context-free grammars in linear time. So Theorem 3.3 holds
for E0Lfin and ET0Lfin.

Theorem 4.8. There exists a constant c > 0 such that
Co-NEXPTIME ⩽ptime {< d > | d ∈ E0Lfin (or
ET0Lfin), L(d) = {0, 1, λ}2cn where n = |d|}.

5 Conclusion

Lindenmayer systems (L systems) are an important interdis-
ciplinary research topic that has impacts on theoretical com-
puter science, computer graphics, and developmental biol-
ogy. In this paper, we study the complexity of many prob-
lems on L systems. These problems include equivalence and
containment problems, and language class comparison prob-
lems. The undecidability or complexity lower bounds for
some important open problems in the interdisciplinary re-
search of L systems, such as the 0L-ness problems for reg-
ular languages, and context-free languages are established.
By using highly efficient many-one reductions, we show that
the 0L-ness problem for regular languages is PSPACE-hard,
and for context-free languages is productive (a stronger form
of undecidability). Also, testing equivalence and containment
to some fixed languages for L systems are studied. The com-
plexity of L systems only generating finite languages is also
investigated. These results have significant practical mean-
ings.

References

[1] A. Lindenmayer, Mathematical models for cellular in-
teractions in development I. Filaments with one-sided
inputs, Journal of Theoretical Biology, 18(3):(1968),
280 – 299, ISSN 0022-5193, doi:http://dx.doi.org/10.
1016/0022-5193(68)90079-9.

[2] G. Rozenberg, A. Salomaa, Lindenmayer Systems:
Impacts on Theoretical Computer Science, Com-
puter Graphics, and Developmental Biology (Springer-
Verlag, Berlin, Heidelberg, 2001), ISBN 0387553207.

[3] L. Ciobanu, V. Diekert, M. Elder, Solution sets for
equations over free groups are edt0l languages, in
M. M. Halldórsson, K. Iwama, N. Kobayashi, B. Speck-
mann, editors, Automata, Languages, and Program-
ming, pages 134–145 (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2015), ISBN 978-3-662-47666-6.

[4] N. D. Jones, S. Skyum, Complexity of some prob-
lems concerning L systems, Mathematical systems
theory, 13:(1979), 29–43, doi:https://doi.org/10.1007/
BF01744286.

[5] L. Kari, G. Rozenberg, A. Salomaa, L Systems, pages
253–328 (Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1997), ISBN 978-3-642-59136-5, doi:10.1007/
978-3-642-59136-5 5.

[6] J. E. Hopcroft, J. D. Ullman, Introduction to Au-
tomata Theory, Languages, and Computation (Addison-
Wesley, Reading, MA., 1979).

[7] H. Rogers, Jr., Theory of Recursive Functions and Effec-
tive Computability (MIT Press, Cambridge, MA, USA,
1987), ISBN 0-262-68052-1.

[8] R. I. Soare, Recursively Enumerable Sets and Degrees
(Springer-Verlag New York, Inc., New York, NY, USA,
1987), ISBN 0-387-15299-7.

[9] J. Xie, H. B. Hunt, III, On the undecidability and de-
scriptional complexity of synchronized regular expres-
sions, Acta Informatica, 60(3):(2023), 257–278, ISSN
0001-5903, doi:10.1007/s00236-023-00439-3.

[10] J. Xie, H. B. Hunt, III, On the computational and
descriptional complexity of multi-pattern languages,
Available at SSRN, doi:http://dx.doi.org/10.2139/ssrn.
4493700.

[11] H. B. Hunt, D. J. Rosenkrantz, T. G. Szymanski, On the
equivalence, containment, and covering problems for
the regular and context-free languages, Journal of Com-
puter and System Sciences, 12(2):(1976), 222 – 268,
ISSN 0022-0000, doi:http://dx.doi.org/10.1016/S0022-
0000(76)80038-4.

[12] S. Greibach, A note on undecidable properties of formal
languages, Mathematical systems theory, 2(1):(1968),
1–6, ISSN 1433-0490, doi:10.1007/BF01691341.

[13] B. S. Baker, R. V. Book, Reversal-bounded multipush-
down machines, Journal of Computer and System Sci-
ences, 8(3):(1974), 315 – 332, ISSN 0022-0000, doi:
http://dx.doi.org/10.1016/S0022-0000(74)80027-9.

[14] G. Rozenberg, A. Salomaa, The Mathematical Theory of
L Systems, pages 161–206 (Springer US, Boston, MA,
1976), ISBN 978-1-4615-8249-6, doi:10.1007/978-1-
4615-8249-6 4.

[15] J. E. Hopcroft, J. D. Ullman, Formal Languages and
Their Relation to Automata (Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1969).

[16] H. B. Hunt, III, D. J. Rosenkrantz, On equivalence and
containment problems for formal languages, J. ACM,
24(3):(1977), 387–396, ISSN 0004-5411, doi:10.1145/
322017.322020.

	Introduction
	Definitions and Notations
	The Universality Problem
	Computational Complexity of L Systems
	Language Class Comparison Problems
	Equivalence and Containment Problems

	Conclusion

