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ABSTRACT 
This paper covers implementation details for an effective 

benchmarking of the four following maze generation 

algorithms: Wilson’s, Hunt-and-Kill, Kruskal’s, and 

Cellular Automation in serial and parallel C++. The 

binaries will then be imported to Python, from which a 

maze building application and a benchmarking application 

will be built. Quantitative and qualitative test data will be 

gathered in hopes of defining the best maze generation 

algorithm from a computational standpoint, a standpoint of 

generating ‘natural’ mazes, and finding an intersection of 

the two to informally define a best algorithm to use for 

novice implementations. 
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1.  Introduction 
 

Delving through the records of human history, one begins 

to see labyrinths showing up in the Middle East as early as 

3000 years ago. Despite appearing to be mazes, labyrinths 

were single paths; walking a labyrinth was an emotional 

and/or spiritual journey with outcomes being decided by 

the designer, then conveyed through the winding paths and 

ambiance of the structure itself. These labyrinths could 

house terrifying Minotaur, as the ones in Crete, or turn 

action into prayers of wellbeing as those in ancient Nordic 

cultures [1,3]. In the Middle Ages, labyrinths would be 

reinterpreted into the mazes we know today – amusing 

pastimes often carved out of the gardens of royalty for fun. 

This influence has stuck around, with most physical mazes 

being carved out of nature to this day [1,3]. 

 

Making the distinction of physical mazes, of course, 

implies that there is much more to the picture than meets 

the eye.  Indeed, in the modern era, computers present a 

much bigger purpose for mazes. Fundamentally, mazes on 

computers are nothing more than a graph theory problem 

waiting to be solved, but the applications of solving that 

problem are far less finite. Pathfinding of non-player 

characters in video games, terrain and level generation in 

video games, navigation applications (such as Google 

Maps) can all be boiled down to mazes that need to either 

be created or solved [1]. One possible implementation for 

maze generation could be mapping out a room, which 

would in turn allow a robot to navigate it independently of 

human input. These applications exist among many others 

and have predicated a great deal of research into maze 

finding algorithms.  

 

The purpose of this research, however, is not to push the 

boundaries of maze generation with a new cutting-edge 

technology or a revolution to the established system. 

Instead, this research will serve as a profile of existing 

algorithms. It will seek to generate comparative 

benchmarks, both in serial and parallel, of algorithms that 

take a variety of approaches to maze finding with a variety 

of different characteristics. 

 

2.  Background and Terminology 

 
The process of completing this research includes algorithm 

selection, implementation, verification, and benchmarking 

twice apiece: once for a set of five serial algorithms and 

again for the same set of algorithms in parallel. In the case 

of the parallel implementations, all algorithms may not be 

suited for parallelization. Those which are deemed unfit for 

parallelization but fit to include in the test suite will, instead 

of parallel benchmarking times, have some combination of 

past research, mathematical proofs, and data forming an 

argument against their parallelization.  

 

To best express these algorithms, some terminology must 

be laid out first. The cover time(Ḡ) is the time it takes for 

a random walk to hit every vertex in a graph [2]. From this, 

it follows that the hitting time, denoted as either average(τ) 

or maximum(h) is the expected time to hit every vertex in 

the graph; both have hard limits at Ḡ and, per [2] never 

reach Ḡ.  

 

 

2.1 Program Specifications 
 

To build a test suite for any application, as many pieces as 

possible need to be held constant between trials. As such, 

the interface through which all algorithms will be run has 

been set. A Maze will be defined as a one-dimensional 

vector of cells, alongside unsigned integers for length and 

width and a bool to make sure that the maze has an end 

(this is currently being used primarily as a sanity check on 

algorithm implementations and may be removed later if it 

is deemed unnecessary). A cell is a half byte in which each 

bit corresponds to each cardinal direction. Any bit set to 0 

represents a direction in which the maze cannot be 

traversed, while a bit set to 1 means that one could leave 
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the current cell in that direction. Given this information, the 

maze itself can be deemed to be relatively memory 

efficient, taking up a total of (N x M) / 2 + 33 bytes total, 

where N and M are the length and width of the maze, 

respectively and in cells. The additional 33 bytes come 

from the following: 24 for the vector that stores the maze, 

8 for two integers, the length and width of the maze, and 

one for a bool that gets padded out to a byte for the sake of 

proper alignment.  

 

The algorithms, once implemented serially, will be tested 

by first converting their output into a format that is 

accepted by an existing maze solver[11]. To ensure that the 

algorithm generates consistently solvable mazes, this 

process will be repeated 1,000 times, varying the size of 

the maze every 10 runs using a seeded random generation 

in the range [10,11]. Once all algorithms have been tested 

and implemented serially, this process will be repeated – 

with each previously implemented and tested algorithm 

being reimplemented in parallel. The technologies used for 

parallelization will vary based on what either makes the 

most sense or has the most straightforward implementation 

(with a strong bias placed on the most sensible option, only 

deviating where a certain technology adds unreasonable 

complexity). Due to the performance sensitive nature of 

benchmarking algorithms, all implementation to this point 

will be done in C++. The parallel implementations will be 

tested with the thread sanitizer active as well. Once all 

methods are implemented and tested, classes encapsulating 

algorithm behavior will be created and exported as binaries 

for use in a Python front end.  

 

There will be two different Python front ends built, each to 

serve a different purpose. The first will be a benchmarking 

application, whose purposes will be discussed in §2.3. The 

second will be a basic GUI allowing users to generate a 

maze, save it to a PDF, and (time permitting) solve it with 

one of the algorithms mentioned in §2.2, three of which can 

be easily modified to solve mazes instead of generating 

them. 

 

2.2 Algorithm Selection 
 

The first algorithm selected is Wilson’s Algorithm. Not 

only is it a more recent addition to the world of maze 

generation algorithms, but it can also be easily adapted to 

solve mazes and has applications outside the maze 

generation world. It is described as “easy to code up, with 

small running time constants” [2]. Wison guarantees that 

this method of generating random spanning trees will 

always be faster, often by a factor of at least two, than the 

standard algorithm that generates random spanning trees in 

maze creation. The algorithm chooses a starting point and 

destination, then attempts to connect them, partially 

restarting itself if it creates a loop, then once it has found a 

path adds that to the existing tree and picks a new point to 

start from, connecting that point to the existing branch until 

all possible connections are made. The algorithm also 

promises to make evenly distributed mazes [2].   

 

Wilson’s Algorithm generates its random spanning trees in 

O(τ) time on undirected graphs, with worst cases being at 

O(h) time for Eulerian graphs and something between the 

two as the general case time complexity for any graph [2]. 

Given the size of an N x M maze, per §2.1, as SM, this 

algorithm should take 2SM space in memory. The memory 

requirement for this algorithm is twice that of the size of 

the maze being generated because it needs to maintain a 

visited and unvisited list, each of which are separate from 

the maze itself but effectively share a copy of the maze, 

moving cells from one list to the other as they are visited 

and walked back into the maze.  

 

Next on the list is the Hunt-and-Kill (HK) Algorithm. This 

algorithm is, in essence, a primitive recursive backtracker 

[5]. A random starting cell is chosen, then a random walk 

is performed from it. A current cell is tracked, choosing a 

random unvisited neighbor until it reaches a point at which 

no neighbors are unvisited. Once this dead end is reached, 

instead of backtracking to look for an empty cell (as a 

recursive backtracker would), it simply starts iterating from 

one corner of the maze in search of an unvisited cell with a 

visited neighbor to start from [5]. Upon finding such a cell, 

another random walk is started from that cell, and the 

process repeats until the iteration reaches the last cell. 

Unlike Wilson’s, this algorithm makes no promises about 

loops and tends to generate longer straight segments, 

resulting in mazes with less dead ends overall [5]. 

 

HK has much less formal documentation than Wilson’s, 

making it rather difficult to pull precise numbers for time 

complexity and memory usage. The algorithm does share 

some characteristics with existing algorithms, namely the 

traditional recursive backtracker mentioned earlier. This 

method of generating mazes is nothing more than a 

randomized depth first search (DFS) that expands all 

possibilities instead of stopping when it finds one path 

[6,7]. As a result of these properties, HK’s time complexity 

must be at least O(V x E) – the time complexity of DFS, 

with V representing the number of vertices and E the 

number of edges in a given graph [6]. Given this 

implementation of maze generation is not using vertices 

and edges but instead cells, and every cell must be visited, 

the substitution O(N x M). This can then be translated to, 

in the absolute best case (a square maze) O(N x N) or O(N2) 

runtime. Keeping in mind that this is a best-case prediction 

made based on a traditional depth first search instead of a 

randomized one, however, the time complexity will, on 

average, be significantly worse than this. The memory 

complexity is looking good, however. Given the fact that 

there is no need to verify whether loops exist, a full second 

copy of the maze does not need to exist. Instead, all that 

should be needed are two references – one to the current 

cell and one to the first row that has an empty cell, to be 

used as a starting point for the hunt for a new starting point 

when the current recursive walk expires. This makes the 

total memory complexity of the algorithm Sm + 16.  

 



Third, we will explore Kruskal’s Algorithm. At the start of 

this algorithm, each cell is treated as a member of its own 

set. The walls between two cells are then picked at random. 

If the cells adjacent to the walls are not in the same set, they 

become members of the same set and the walls between 

them are destroyed [8]. This process is then repeated until 

every cell in the maze is part of a single set. This algorithm 

also ends up creating a spanning tree [8]. Notably, unlike 

the other algorithms on this list Kruskal’s, even when 

randomized, biases towards making mazes with many short 

paths that are always fully connected [9]. These traits are 

reported to make mazes generated with Kruskal’s easier to 

complete. 

 

The last algorithm being implemented is not actually an 

algorithm – more of an idea. Cellular Automata have been 

employed for many different purposes, notably Conway’s 

Game of Life. The idea is simple – create a state-based 

machine that decides whether a cell is disconnected, is 

seeded for connection, or is connected. These states, in 

order, are equivalent to being dead, born, and alive in 

Conway’s Game of Life; the key difference being that 

connected cells cannot die, they just also do not expand any 

more [10]. The implementation will keep a bit vector 

representing the maze with each state initially set to 0. One 

cell will be seeded (its state will be changed to 1). All 

seeded cells will check their neighbors and pick one 

unvisited neighbor to seed based on a percentage chance to 

turn. The previously seeded cell will now turn to state 2, 

regardless of the state of the newly seeded cell. At this 

point, the walls between these two cells in the actual maze 

will be removed (connecting the maze cells). This process 

will start over in the newly seeded neighbor. Based on a 

hardcoded probability, the cell in state 2 will either become 

a seed again or move to state 3, connected. State 3 cells are 

essentially finalized, however as a failsafe if all seeds die 

all state 3 cells will have a chance to return to state 1 based 

on the same external probability which governs the change 

from state 2 [10]. Note that the higher this branching 

probability is, the more branches the maze will have, and 

thus the more difficult it will likely feel to solve. The mazes 

resulting from cellular automation can be very easily tuned. 

Changing either the probability to reseed (for a stage 2 to 

return to stage 1) and the chance for the cell to choose to 

turn both impact the maze structure, with too much or too 

little homogenizing the overall structure of the maze, as 

Justin Parr demonstrated [10].  

 

The time complexity of this implementation heavily 

depends on the values of the two constants defined in the 

previous section. Parr notes two cases as opposite 

extremes: 0% chance to branch with no collisions (best 

case) and 100% chance to branch started in a corner. The 

former yields a time complexity of 2N2 – 1, where the latter 

reaches 4N2 in the case of a square maze, substituting N for 

N x M for any non-square maze [10]. Experimental data 

compiled in Parr’s research shows that the worst observed 

case was closer to 1.1N2, with the best case being an 

impressive 4N [10]. The memory requirement for this 

implementation should be exactly 1.5Sm + 8 bytes of 

memory. This number can be quickly derived from the fact 

that the maze is needed alongside capacity to store four 

additional states for each cell, which can be a bit vector in 

which each element is two bits. This is half the size of the 

original maze exactly, then the 8 extra bytes of memory are 

the two constants used, stored as integers.  

 

 2.3 Benchmarking Process 

 
Before mentioning the actual data that is being gathered, it 

is important to attempt to control the environment the data 

is being gathered on. As such, all data for this experiment 

will be gathered on a CLI only install of Arch Linux on a 

machine with no other processes running. Specifics about 

the machine’s memory and CPU will be gathered and 

disclosed prior to data presentation.  

  

The quantitative benchmarks gathered across the various 

algorithms will begin with seeding the random number 

generator that picks the starting position in each maze. This 

should not result in the same mazes being generated by 

each algorithm. It will result in each of them having the 

same starting point; see the time complexity of solving 

mazes with cellular automata in §2.2 for a detailed 

explanation of the importance of starting position.  

 

With the random generation held constant, trial specifics 

can begin to be outlined. Each algorithm will be tested with 

a set of 10,000 mazes generated, with the first starting size 

in each case being a 25 x 25 cell maze. The first 5,000 

mazes will see both length and width increase by 25 every 

100 runs until all 5000 mazes are complete. This will result 

in the last 100 mazes requiring that 1,562,500 cells be 

solved. Once the 5000 mark is reached, the size will reset 

to 25x25, but now the length will increase by 25 while the 

width increases by 35 between each 100 runs. This will 

ensure that all methods are benchmarked on both square 

and rectangular mazes. If time permits, additional testing 

may be done with more extreme rectangles to see if that 

biases the data any. 

 

The data recorded for each trial will be memory usage, time 

to complete, and maze size. Python’s data analysis tools 

will be used to aggregate the data gathered based on maze 

size. For both time and memory usage at a given maze size, 

the minimum, median, maximum, and mean will be 

recorded. In the case of the serial implementations, the 

graphs built from this data will be compared to the graphs 

of the time and memory complexities calculated in §2.2 to 

prove or disprove the estimates made there. The data for 

the parallel implementation of a given algorithm will be 

compared to the data for the serial implementation to 

calculate speedups, with standard deviations and min/max 

times being used as general measurements of the 

consistency of the algorithm’s performance. Bandwidth 

data will also be gathered and, if either memory or cache 

become bottlenecks based on the calculated values, those 

will be released alongside theoretical times with the 



bottleneck removed. Parallel implementations will be 

compared to theoretical perfect speedups, from which 

overhead costs will be extrapolated, and commentary will 

be given on the point at which it is worth switching to the 

parallel implementations provided, if that point is 

reachable.  

 

Qualitative testing will be a lot less strictly formed. Two 

sample groups will be collected. The first will be given a 

set of only mazes generated by cellular automata, each at 

different calibrations of the two constants discussed in §2.2 

and asked to rank how natural the mazes look. Natural will 

be defined as how willing you would be to believe they 

were made by a human on a scale of 1-10. From there, 

results will be tallied, and that data will be used to calibrate 

the cellular automata mazes for the second group, who will 

now be ranking the various implementations – both serial 

and parallel implementations – based on the same criteria 

presented to the cellular automata group. This data will be 

presented as an informal answer to the question of which 

algorithm generates the ‘best’ mazes, though should by no 

means be taken as an absolute answer to the question 

because it is a matter of opinion that has been very 

informally polled.  

  

3.  Foreseeable Problems 
 

The problems that are easily spotted going into this can be 

split into two main categories: implementation problems 

and testing problems. The first of these groups arises from 

the fact that in our searching we found no record of all these 

algorithms being implemented in parallel. While we have 

loose ideas of the ways that they could be done, there is no 

guarantee going in that they will all be parallelizable in a 

way that makes mathematical and logical sense. At a bare 

minimum, they should all be parallelizable by chopping up 

the maze and having different threads each run the serial 

method on different parts of the maze, however the 

synchronization costs to facilitate that would likely take a 

large enough chunk out of the observable speedup that it is 

not worth doing unless the mazes are massive. If the 

parallel implementations are slower or near the same speed 

at the bounds of the current testing, some tests may be 

redone on mazes orders of magnitude larger to give 

parallelism a chance to shine. 

 

The second major category of problems that could be 

encountered are testing problems. Relying on a human 

sample size, beyond introducing the uncontrollable human 

element, relies on humans to show up to the tests. Asking 

this once is hard enough, but twice has a huge risk of not 

generating enough participants to gather interesting data. 

We are debating dropping the first test and subjecting my 

thesis advisors and panel to being informal test dummies 

for the calibration of the cellular automata as a partial 

solution, but unfortunately, we do not have a contingency 

plan if not enough people show up – the qualitative tests 

will just need to be cut from the final results.  
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