
The Effects of Parallelization on Common Maze Generation Algorithms

Peter Freedman, Gary Zoppetti

Millersville University of Pennsylvania

pwfreedm@millersville.edu, Gary.Zoppetti@millersville.edu

ABSTRACT
This paper covers implementation details for an effective

benchmarking of the four following maze generation

algorithms: Wilson’s, Hunt-and-Kill, Kruskal’s, and

Cellular Automation in serial and parallel C++. The

binaries will then be imported to Python, from which a

maze building application and a benchmarking application

will be built. Quantitative and qualitative test data will be

gathered in hopes of defining the best maze generation

algorithm from a computational standpoint, a standpoint of

generating ‘natural’ mazes, and finding an intersection of

the two to informally define a best algorithm to use for

novice implementations.

KEY WORDS
Parallel, Maze, Pathfinding, C++, Python

1. Introduction

Delving through the records of human history, one begins

to see labyrinths showing up in the Middle East as early as

3000 years ago. Despite appearing to be mazes, labyrinths

were single paths; walking a labyrinth was an emotional

and/or spiritual journey with outcomes being decided by

the designer, then conveyed through the winding paths and

ambiance of the structure itself. These labyrinths could

house terrifying Minotaur, as the ones in Crete, or turn

action into prayers of wellbeing as those in ancient Nordic

cultures [1,3]. In the Middle Ages, labyrinths would be

reinterpreted into the mazes we know today – amusing

pastimes often carved out of the gardens of royalty for fun.

This influence has stuck around, with most physical mazes

being carved out of nature to this day [1,3].

Making the distinction of physical mazes, of course,

implies that there is much more to the picture than meets

the eye. Indeed, in the modern era, computers present a

much bigger purpose for mazes. Fundamentally, mazes on

computers are nothing more than a graph theory problem

waiting to be solved, but the applications of solving that

problem are far less finite. Pathfinding of non-player

characters in video games, terrain and level generation in

video games, navigation applications (such as Google

Maps) can all be boiled down to mazes that need to either

be created or solved [1]. One possible implementation for

maze generation could be mapping out a room, which

would in turn allow a robot to navigate it independently of

human input. These applications exist among many others

and have predicated a great deal of research into maze

finding algorithms.

The purpose of this research, however, is not to push the

boundaries of maze generation with a new cutting-edge

technology or a revolution to the established system.

Instead, this research will serve as a profile of existing

algorithms. It will seek to generate comparative

benchmarks, both in serial and parallel, of algorithms that

take a variety of approaches to maze finding with a variety

of different characteristics.

2. Background and Terminology

The process of completing this research includes algorithm

selection, implementation, verification, and benchmarking

twice apiece: once for a set of five serial algorithms and

again for the same set of algorithms in parallel. In the case

of the parallel implementations, all algorithms may not be

suited for parallelization. Those which are deemed unfit for

parallelization but fit to include in the test suite will, instead

of parallel benchmarking times, have some combination of

past research, mathematical proofs, and data forming an

argument against their parallelization.

To best express these algorithms, some terminology must

be laid out first. The cover time(Ḡ) is the time it takes for

a random walk to hit every vertex in a graph [2]. From this,

it follows that the hitting time, denoted as either average(τ)

or maximum(h) is the expected time to hit every vertex in

the graph; both have hard limits at Ḡ and, per [2] never

reach Ḡ.

2.1 Program Specifications

To build a test suite for any application, as many pieces as

possible need to be held constant between trials. As such,

the interface through which all algorithms will be run has

been set. A Maze will be defined as a one-dimensional

vector of cells, alongside unsigned integers for length and

width and a bool to make sure that the maze has an end

(this is currently being used primarily as a sanity check on

algorithm implementations and may be removed later if it

is deemed unnecessary). A cell is a half byte in which each

bit corresponds to each cardinal direction. Any bit set to 0

represents a direction in which the maze cannot be

traversed, while a bit set to 1 means that one could leave

mailto:pwfreedm@millersville.edu
mailto:Gary.Zoppetti@millersville.edu

the current cell in that direction. Given this information, the

maze itself can be deemed to be relatively memory

efficient, taking up a total of (N x M) / 2 + 33 bytes total,

where N and M are the length and width of the maze,

respectively and in cells. The additional 33 bytes come

from the following: 24 for the vector that stores the maze,

8 for two integers, the length and width of the maze, and

one for a bool that gets padded out to a byte for the sake of

proper alignment.

The algorithms, once implemented serially, will be tested

by first converting their output into a format that is

accepted by an existing maze solver[11]. To ensure that the

algorithm generates consistently solvable mazes, this

process will be repeated 1,000 times, varying the size of

the maze every 10 runs using a seeded random generation

in the range [10,11]. Once all algorithms have been tested

and implemented serially, this process will be repeated –

with each previously implemented and tested algorithm

being reimplemented in parallel. The technologies used for

parallelization will vary based on what either makes the

most sense or has the most straightforward implementation

(with a strong bias placed on the most sensible option, only

deviating where a certain technology adds unreasonable

complexity). Due to the performance sensitive nature of

benchmarking algorithms, all implementation to this point

will be done in C++. The parallel implementations will be

tested with the thread sanitizer active as well. Once all

methods are implemented and tested, classes encapsulating

algorithm behavior will be created and exported as binaries

for use in a Python front end.

There will be two different Python front ends built, each to

serve a different purpose. The first will be a benchmarking

application, whose purposes will be discussed in §2.3. The

second will be a basic GUI allowing users to generate a

maze, save it to a PDF, and (time permitting) solve it with

one of the algorithms mentioned in §2.2, three of which can

be easily modified to solve mazes instead of generating

them.

2.2 Algorithm Selection

The first algorithm selected is Wilson’s Algorithm. Not

only is it a more recent addition to the world of maze

generation algorithms, but it can also be easily adapted to

solve mazes and has applications outside the maze

generation world. It is described as “easy to code up, with

small running time constants” [2]. Wison guarantees that

this method of generating random spanning trees will

always be faster, often by a factor of at least two, than the

standard algorithm that generates random spanning trees in

maze creation. The algorithm chooses a starting point and

destination, then attempts to connect them, partially

restarting itself if it creates a loop, then once it has found a

path adds that to the existing tree and picks a new point to

start from, connecting that point to the existing branch until

all possible connections are made. The algorithm also

promises to make evenly distributed mazes [2].

Wilson’s Algorithm generates its random spanning trees in

O(τ) time on undirected graphs, with worst cases being at

O(h) time for Eulerian graphs and something between the

two as the general case time complexity for any graph [2].

Given the size of an N x M maze, per §2.1, as SM, this

algorithm should take 2SM space in memory. The memory

requirement for this algorithm is twice that of the size of

the maze being generated because it needs to maintain a

visited and unvisited list, each of which are separate from

the maze itself but effectively share a copy of the maze,

moving cells from one list to the other as they are visited

and walked back into the maze.

Next on the list is the Hunt-and-Kill (HK) Algorithm. This

algorithm is, in essence, a primitive recursive backtracker

[5]. A random starting cell is chosen, then a random walk

is performed from it. A current cell is tracked, choosing a

random unvisited neighbor until it reaches a point at which

no neighbors are unvisited. Once this dead end is reached,

instead of backtracking to look for an empty cell (as a

recursive backtracker would), it simply starts iterating from

one corner of the maze in search of an unvisited cell with a

visited neighbor to start from [5]. Upon finding such a cell,

another random walk is started from that cell, and the

process repeats until the iteration reaches the last cell.

Unlike Wilson’s, this algorithm makes no promises about

loops and tends to generate longer straight segments,

resulting in mazes with less dead ends overall [5].

HK has much less formal documentation than Wilson’s,

making it rather difficult to pull precise numbers for time

complexity and memory usage. The algorithm does share

some characteristics with existing algorithms, namely the

traditional recursive backtracker mentioned earlier. This

method of generating mazes is nothing more than a

randomized depth first search (DFS) that expands all

possibilities instead of stopping when it finds one path

[6,7]. As a result of these properties, HK’s time complexity

must be at least O(V x E) – the time complexity of DFS,

with V representing the number of vertices and E the

number of edges in a given graph [6]. Given this

implementation of maze generation is not using vertices

and edges but instead cells, and every cell must be visited,

the substitution O(N x M). This can then be translated to,

in the absolute best case (a square maze) O(N x N) or O(N2)

runtime. Keeping in mind that this is a best-case prediction

made based on a traditional depth first search instead of a

randomized one, however, the time complexity will, on

average, be significantly worse than this. The memory

complexity is looking good, however. Given the fact that

there is no need to verify whether loops exist, a full second

copy of the maze does not need to exist. Instead, all that

should be needed are two references – one to the current

cell and one to the first row that has an empty cell, to be

used as a starting point for the hunt for a new starting point

when the current recursive walk expires. This makes the

total memory complexity of the algorithm Sm + 16.

Third, we will explore Kruskal’s Algorithm. At the start of

this algorithm, each cell is treated as a member of its own

set. The walls between two cells are then picked at random.

If the cells adjacent to the walls are not in the same set, they

become members of the same set and the walls between

them are destroyed [8]. This process is then repeated until

every cell in the maze is part of a single set. This algorithm

also ends up creating a spanning tree [8]. Notably, unlike

the other algorithms on this list Kruskal’s, even when

randomized, biases towards making mazes with many short

paths that are always fully connected [9]. These traits are

reported to make mazes generated with Kruskal’s easier to

complete.

The last algorithm being implemented is not actually an

algorithm – more of an idea. Cellular Automata have been

employed for many different purposes, notably Conway’s

Game of Life. The idea is simple – create a state-based

machine that decides whether a cell is disconnected, is

seeded for connection, or is connected. These states, in

order, are equivalent to being dead, born, and alive in

Conway’s Game of Life; the key difference being that

connected cells cannot die, they just also do not expand any

more [10]. The implementation will keep a bit vector

representing the maze with each state initially set to 0. One

cell will be seeded (its state will be changed to 1). All

seeded cells will check their neighbors and pick one

unvisited neighbor to seed based on a percentage chance to

turn. The previously seeded cell will now turn to state 2,

regardless of the state of the newly seeded cell. At this

point, the walls between these two cells in the actual maze

will be removed (connecting the maze cells). This process

will start over in the newly seeded neighbor. Based on a

hardcoded probability, the cell in state 2 will either become

a seed again or move to state 3, connected. State 3 cells are

essentially finalized, however as a failsafe if all seeds die

all state 3 cells will have a chance to return to state 1 based

on the same external probability which governs the change

from state 2 [10]. Note that the higher this branching

probability is, the more branches the maze will have, and

thus the more difficult it will likely feel to solve. The mazes

resulting from cellular automation can be very easily tuned.

Changing either the probability to reseed (for a stage 2 to

return to stage 1) and the chance for the cell to choose to

turn both impact the maze structure, with too much or too

little homogenizing the overall structure of the maze, as

Justin Parr demonstrated [10].

The time complexity of this implementation heavily

depends on the values of the two constants defined in the

previous section. Parr notes two cases as opposite

extremes: 0% chance to branch with no collisions (best

case) and 100% chance to branch started in a corner. The

former yields a time complexity of 2N2 – 1, where the latter

reaches 4N2 in the case of a square maze, substituting N for

N x M for any non-square maze [10]. Experimental data

compiled in Parr’s research shows that the worst observed

case was closer to 1.1N2, with the best case being an

impressive 4N [10]. The memory requirement for this

implementation should be exactly 1.5Sm + 8 bytes of

memory. This number can be quickly derived from the fact

that the maze is needed alongside capacity to store four

additional states for each cell, which can be a bit vector in

which each element is two bits. This is half the size of the

original maze exactly, then the 8 extra bytes of memory are

the two constants used, stored as integers.

 2.3 Benchmarking Process

Before mentioning the actual data that is being gathered, it

is important to attempt to control the environment the data

is being gathered on. As such, all data for this experiment

will be gathered on a CLI only install of Arch Linux on a

machine with no other processes running. Specifics about

the machine’s memory and CPU will be gathered and

disclosed prior to data presentation.

The quantitative benchmarks gathered across the various

algorithms will begin with seeding the random number

generator that picks the starting position in each maze. This

should not result in the same mazes being generated by

each algorithm. It will result in each of them having the

same starting point; see the time complexity of solving

mazes with cellular automata in §2.2 for a detailed

explanation of the importance of starting position.

With the random generation held constant, trial specifics

can begin to be outlined. Each algorithm will be tested with

a set of 10,000 mazes generated, with the first starting size

in each case being a 25 x 25 cell maze. The first 5,000

mazes will see both length and width increase by 25 every

100 runs until all 5000 mazes are complete. This will result

in the last 100 mazes requiring that 1,562,500 cells be

solved. Once the 5000 mark is reached, the size will reset

to 25x25, but now the length will increase by 25 while the

width increases by 35 between each 100 runs. This will

ensure that all methods are benchmarked on both square

and rectangular mazes. If time permits, additional testing

may be done with more extreme rectangles to see if that

biases the data any.

The data recorded for each trial will be memory usage, time

to complete, and maze size. Python’s data analysis tools

will be used to aggregate the data gathered based on maze

size. For both time and memory usage at a given maze size,

the minimum, median, maximum, and mean will be

recorded. In the case of the serial implementations, the

graphs built from this data will be compared to the graphs

of the time and memory complexities calculated in §2.2 to

prove or disprove the estimates made there. The data for

the parallel implementation of a given algorithm will be

compared to the data for the serial implementation to

calculate speedups, with standard deviations and min/max

times being used as general measurements of the

consistency of the algorithm’s performance. Bandwidth

data will also be gathered and, if either memory or cache

become bottlenecks based on the calculated values, those

will be released alongside theoretical times with the

bottleneck removed. Parallel implementations will be

compared to theoretical perfect speedups, from which

overhead costs will be extrapolated, and commentary will

be given on the point at which it is worth switching to the

parallel implementations provided, if that point is

reachable.

Qualitative testing will be a lot less strictly formed. Two

sample groups will be collected. The first will be given a

set of only mazes generated by cellular automata, each at

different calibrations of the two constants discussed in §2.2

and asked to rank how natural the mazes look. Natural will

be defined as how willing you would be to believe they

were made by a human on a scale of 1-10. From there,

results will be tallied, and that data will be used to calibrate

the cellular automata mazes for the second group, who will

now be ranking the various implementations – both serial

and parallel implementations – based on the same criteria

presented to the cellular automata group. This data will be

presented as an informal answer to the question of which

algorithm generates the ‘best’ mazes, though should by no

means be taken as an absolute answer to the question

because it is a matter of opinion that has been very

informally polled.

3. Foreseeable Problems

The problems that are easily spotted going into this can be

split into two main categories: implementation problems

and testing problems. The first of these groups arises from

the fact that in our searching we found no record of all these

algorithms being implemented in parallel. While we have

loose ideas of the ways that they could be done, there is no

guarantee going in that they will all be parallelizable in a

way that makes mathematical and logical sense. At a bare

minimum, they should all be parallelizable by chopping up

the maze and having different threads each run the serial

method on different parts of the maze, however the

synchronization costs to facilitate that would likely take a

large enough chunk out of the observable speedup that it is

not worth doing unless the mazes are massive. If the

parallel implementations are slower or near the same speed

at the bounds of the current testing, some tests may be

redone on mazes orders of magnitude larger to give

parallelism a chance to shine.

The second major category of problems that could be

encountered are testing problems. Relying on a human

sample size, beyond introducing the uncontrollable human

element, relies on humans to show up to the tests. Asking

this once is hard enough, but twice has a huge risk of not

generating enough participants to gather interesting data.

We are debating dropping the first test and subjecting my

thesis advisors and panel to being informal test dummies

for the calibration of the cellular automata as a partial

solution, but unfortunately, we do not have a contingency

plan if not enough people show up – the qualitative tests

will just need to be cut from the final results.

4. References

[1] CMU Class Notes,

https://www.cs.cmu.edu/~112/notes/student-tp-

guides/Mazes.pdf (accessed Feb. 22, 2024).

[2] B. Wilson, “Generating Random Spanning Trees

More Quickly Than Cover Time,” CMU University

Website,

https://www.cs.cmu.edu/~15859n/RelatedWork/RandomT

rees-Wilson.pdf (accessed Feb. 22, 2024).

[3] S. Magazine, “The winding history of the maze,”

Smithsonian.com,

https://www.smithsonianmag.com/travel/winding-history-

maze-180951998/ (accessed Feb. 22, 2024).

[4] “Markov Chains,” Markov chains,

https://nlp.stanford.edu/IR-

book/html/htmledition/markov-chains-1.html (accessed

Feb. 22, 2024).

[5] J. Buck, The Buckblog,

https://weblog.jamisbuck.org/2011/1/24/maze-generation-

hunt-and-kill-algorithm (accessed Feb. 22, 2024).

[6] S. H. Shah, J. M. Mohite, A. G. Musale, and J. L.

Borade, “Survey Paper on Maze Generation Algorithms

for Puzzle Solving Games,” International Journal of

Scientific & Engineering Research, vol. 08, no. 02,

Feb. 2017. doi:10.14299/ijser.2017.02

[7] L. Peachey, Parameterized maze generation algorithm

for specific ..., https://portfolios.cs.earlham.edu/wp-

content/uploads/2022/05/Parameterized-Maze-

Generation-Algorithm-for-Specific-Difficulty-Maze-

Generation.pdf (accessed Feb. 22, 2024).

[8] P. H. Kim, Intelligent maze generation,

https://etd.ohiolink.edu/acprod/odb_etd/ws/send_file/send

?accession=osu1563286393237089&disposition=inline

(accessed Feb. 22, 2024).

[9] L. Williams, “Kruskal algorithm Maze Generation,”

Kruskal Maze Generating, https://www.integral-

domain.org/lwilliams/Applets/algorithms/kruskalmaze.ph

p (accessed Feb. 22, 2024).

[10] Generating mazes using cellular automata | Justin A.

Parr, http://justinparrtech.com/JustinParr-Tech/wp-

content/uploads/Creating Mazes Using Cellular

Automata_v2.pdf (accessed Feb. 22, 2024).

[11] J. D’Silva, “A generic C++ implementation of a

maze data structure along with maze solving algorithms

using graphs.,” GitHub,

https://github.com/JeremyDsilva/MazeSolver (accessed

Feb. 22, 2024).

