

HOW POSITION VS DIRECTION AFFECTS LEARNING TO PASS A BALL

Dr. Girard

cdgira@ship.edu

Shippensburg University

ABSTRACT

Spatial information can be difficult to represent to neural

networks. This is because as location values increase in

value this triggers a stronger response from the neural

network, such as 5,5 going to 10,10. However, in many

cases this is not the desired effect. This research builds on

previous work to see how the way spatial information is

presented affects the accuracy of the neural network. This

research looks at using an abbreviated model of

representing (x,y) positions verses using direction

combined with distance. The problem environment is the

passing of an object to a moving target. The overall

accuracy of each model will be tested and compared to one

another.

KEY WORDS

Neural Network, Spatial Location

1 Introduction

Neural networks learn by updating weights such that they

can correctly predict the output from a given input. They

try to find patterns, so they perform best where inputs do

not generate conflicting outputs [1,3,7,8,12]. The design

of the neural network has three key aspects: how many

nodes in each layer, how the nodes are connected, and how

values are computed. can vary greatly depending on the

connection of the input to the output and one input to the

next [1,3,7,8]. This paper will explore designs to represent

spatial information to a neural network.

2 Background

Because the value being computed has no bearing on

previous inputs, the work here uses a standard feed forward

neural network. A simple feed forward network can be seen

in Figure 1. In Figure 1 there are 8 nodes: i1, i2, h1, h2,

o1, o2, b1, and b2. The i1 and i2 nodes are the input nodes

for the neural network and form what is called the input

layer. The input layer will take in numerical values,

usually within a range of 0 to 1, that represent the situation

being evaluated [1,3,6,7,8,9].

Figure 1: Connected Neural Network [11]

The h1 and h2 nodes are the hidden nodes for this neural

network and form what is called the hidden layer. Each

hidden node in figure 1 gets input from both input nodes.

As such the input layer and hidden layer are considered

fully connected. This is not required, but is common in

many feed forward neural networks. Additionally, h1 and

h2 are connected to one of the bias nodes, b1. While the

models in this paper only used one hidden layer, it is

possible to have additional hidden layers [1,3,6,7,8,9]. The

o1 and o2 nodes are the output nodes for this neural

network and form what is called the output layer. Each

output node in figure 1 gets input from both the hidden

nodes. Additionally, the output nodes are connected to the

other bias node, b2 [1,3,6,7,8,9].

The values for the bias nodes, b1 and b2, are set at the start

and do not change. These values are normally used to help

the neural network overcome an expected threshold. For

example, if the input nodes create a large combined

positive value, the bias node could be set to a negative

value to adjust this value back down [3,5,9,11]. The

models used in this study did not have any bias nodes.

2.1 Computing Output Value

The process of providing input values and computing the

output values in a neural network is called forward

propagation. This starts by first setting the values for the

input nodes. [3,6]. From there, each node in the first hidden

layer will sum the value of each input node times the

weight of the connection. For example, in Figure 1 the

node h1 would sum the value of i1*w1 + i2*w3. If there

are any bias nodes that value is included in the sum as well.

So, for node h1 it would also add the value from node b1

to its summation. After the summation step a node may

apply an activation function [3,6,9,10,11].

The role of the activation function is to constrain the values

produced by a node. Sigmoid, Tanh, and ReLU are

commonly used for this role [3,6,9,11,17]. Both Sigmoid

and Tanh were tested with the model, but found both to be

less reliable than a version of ReLU. As such only ReLU

is focused on in this paper.

(1) 𝑅𝑒𝐿𝑈(𝑥) = {
𝑥 𝑖𝑓 𝑥 > 0
0 𝑖𝑓 𝑥 ≤ 0

(2) 𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈(𝑥) = {
𝑥 𝑖𝑓 𝑥 > 0

0.1 ∗ 𝑥 𝑖𝑓 𝑥 ≤ 0

(3) 𝐴𝐶𝑇(𝑥) = {

max (2,1 + (x − 1) ∗ 0.01 if x > 1
𝑥 𝑖𝑓 − 1 ≤ 𝑥 ≤ 1

min (−2, −1 + (x + 1) ∗ 0.01 if x < 1

The basic ReLU activation function, equation 1, converts

any value less than 0 to 0, and leaves unchanged any value

greater than 0. However, having a hard cutoff can have
unintended effects. This is where Leaky ReLU, see

equation 2, comes in. This version of Leaky ReLU allows

for slow growth in values when the input is less than 0

[6,18]. This paper uses a specialized version of Leaky

ReLU, see equation 3. This allowed for both positive and

negative values, no hard cutoff, but also no growth to

infinity.

Figure 2 - An Artificial Neuron [9]

The full forward propagation process for a node is

summarized in Figure 2. The process continues until it

reaches the output layer. When the output layer’s neurons

have been evaluated, a decision will be made based on the

result. This process happens every time a new input is

given to the network, and everything is computed again

[3,6,9,10,11].

2.2 Learning Process

The weights of a neural network are usually set to random

values between -1 and 1. Because of this, the initial output

of a neural network usually does not match the expected

output. For this to occur the weights are adjusted using a

process called back propagation. This process starts at the

output layer and works its way backward through the layers

as it self-evaluates. Back propagation starts by first

determining the amount of error, see equation 4, with each

output node [4,11,14,15].

(4) 𝐸 = 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡 [11]

The connected weights to that output neuron are then

adjusted, see equation 6, based on the activation function

used, the learning rate, and the amount it contributed to the

output value. For the specialized version of Leaky ReLU

equation 5 computes the rate of change that is occurring

based on the value of output. Additionally, equation 6

assumes no use of a bias value.

(5) 𝑎𝑑𝑗𝑂𝑢𝑡 = {
0 𝑖𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 ≤ −2 𝑜𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 2

1 𝑖𝑓 − 1 ≤ 𝑜𝑢𝑡𝑝𝑢𝑡 ≤ 1
0.1 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

 [11]

(6) 𝑤𝑖 = 𝑤𝑖 + 𝜂 ∗ 𝑖𝑛𝑗 ∗ 𝑎𝑑𝑗𝑂𝑢𝑡 ∗ 𝐸 [11]

In back propagation, for equation 5, output is initially the

result produced by an output node. Later it will be the

value for a hidden node. For equation 6 it is updating the

weight, wi, for the connection to a node in the previous

layer. The value inj is the output value from the node in the

previous layer. The value η is the learning rate value. The

learning rate dictates how much of an impact each learning

iteration will have [4,11,14,15]. In the first phase of back

propagation this process is applied to all connections

between all hidden layer nodes and output layer nodes. In

Figure 1 this would mean updating w5, w6, w7, and w8.

(7) 𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ (𝑜𝑢𝑡𝑝𝑢𝑡𝑛 − 𝑡𝑎𝑟𝑔𝑒𝑡𝑛)1
𝑚 [11]

The total error is used when updating the weights between

the hidden layer and the input layer or between hidden

layers. In equation 7 the total error, Etotal, is computed by

summing the error for each output neuron. Then, the

weights are adjusted that connect these layers the same as

with the weights between the final hidden layer and the

output layer by substituting Etotal for E in equation 6

[4,11,14,15]. For example, Etotal would be used to update

w1, w2, w3, and w4 in Figure 1.

With back propagation, it can be applied to every cycle of

forward propagation, or it can be applied after multiple

forward propagations. In either case, this process is

effectively repeated until the desired rate of error or

improvement rate has been reached within the network

[4,11,14,15].

2.2 Representing Location

Representing location in a neural network is a challenge.

Due to how neural networks respond to values changing it

is not possible to simply encode the coordinate locations

directly [17]. There are a few approaches already in use:

sinusoidal, clustering, grid, and abbreviated [1,2,12,13,17].

The sinusoidal encoder is based on work related to

encoding the location on a rotating shaft using sin and cos.

This approach allows for the location to be represented by

two values that range between -1 and 1. It scales well with

any dimension size and how the values change work well

within the scope of a neural network [2,12,13]. However,

it comes with the cost of converting to and from their sin

and cos representations and as such will not be used here.

In the case of clustering, a fixed number of groups of

related locations are created. An approach to encoding this

data is to use one-hot encoding, where each group/location

is represented by a single node. Overall, this approach

works well when the total number of groups stays the same

and the neural network does not need to intuit spatial

information between two groups of points [2,16,19].

Because of the number of possible locations and need to
intuit spatial information this approach will not be used.

Grid takes the approach of providing a node for every

possible location, while also preserving spatial information

between nodes. By representing all possible locations in

the domain, it solves the spatial problem found in the

cluster approach [1,17]. Unfortunately, unlike the

sinusoidal approach, using a grid encoding does not scale

well and as such will not be used here.

An abbreviated approach makes use of one-hot encoding to

try and turn coordinate information into something that is

better understood by the neural network. It takes a

numerical value and then encodes the value in terms of

ones, tends, hundreds, etc. The neural network would have

a group of 10 nodes for the ones, each one representing a

specific digit (0-9) and the same for the tens place, etc [17].

This approach provides the same information as grid, but

with better scaling. Additionally, it doesn’t require the

conversion expense of sinusoidal. Because of these

properties it will be one of the approaches used.

2.3 Direction Based Approach

All the approaches above focused on representing spatial

information by raw location values. This paper also tries a

directional approach to representing the information.

Instead of representing the source and target as locations,

everything will be represented using relative direction and

distance. Two approaches will be used to represent

direction: compass and vector.

In the case of the compass approach, there will be 9 total

nodes used. Eight of the nodes are used to represent a

direction on a compass: N, NE, E, SE, S, SW, W, and NW.

If the object is between compass locations (e.g. NNW),

then two nodes (e.g. N and NW for NNW) are used to

represent direction. The ninth node is used to represent

distance to the object.

For the vector approach, there will be three total nodes

used. Two of the nodes will hold the x and y values for the

unit vector representing the direction to object. The third

node will then represent the distance to the object. For both

the compass and unit vector approach all distances will be

normalized so they fall within the range of 0 to 1.

3 Experiment Design

The neural network will learn how to pass a ball to a

moving person called the receiver in a 10x10 and 50x50

sized grid. This is a similar testing approach to that taken

in [17]. Two different sized areas are used to see if field

size affects the performance of each approach.

The input to the neural network is broken up into three

approaches: Location using abbreviated, Direction using

compass, and Direction using vector. The speed of the ball

and the receiver will be fixed and so are not provided as

input. The neural network will then output the direction

the ball should be kicked.

3.1 Hypotheses

Because passing a ball relies on computing a direction

usually relative to the receiver it is assumed that providing

the direction to the receiver reduces the required

calculations. So, the first hypothesis is:

Direction based (Compass and Vector) approaches

will perform better than location only (Abbreviated)

based approaches.

Additionally, from the work in [17] it appears that more

data is not always better from the results of grid vs

abbreviated. As such the second hypothesis is:

Vector encoding approach will perform better than

Compass encoding approach.

During testing of the different neural network designs the

drawback of using total error to update the weights

between the hidden and input layers came to light. For the

output to hidden layer the amount of error for each weight

is directly tied to a specific output node. However, for the

input to hidden layer it is the combined error, which creates

the chance the individual errors could be in conflict (one

needs weights increased and the other weights decreased).

As such, a Vector model is tested that only computes the x

output of the unit vector and one that only computes the y

output of the unit vector. The idea is this approach will be

able to tune the neural network more accurately, creating

one more hypothesis:

Vector Separated (one for X and one for Y) will

perform better than Vector combined.

3.2 Setup Details

The constants in the system are the speed of the ball, speed

of the receiver, and the position of the sending player,

called the sender. The receiver’s speed is always set to 1.

The ball’s speed is set to 2, so it is always faster than the

receiver. The sender is always placed in the middle of the

grid, at position 5,5 for the 10x10 grid and 25, 25 for the

50x50 grid. The ball is assumed kicked at time 0.

For the Abbreviated method there are a total of 42 input

nodes for the 10x10: 20 for location of receiver, 20 for

location of sender, and 2 for direction receiver is moving.

For the 50x50 Abbreviated needs 66 input nodes: 32 for

location of receiver, 32 for location of sender, and 2 for the

direction receiver is moving. Because the options for tens

place is just 0 to 5, we only need 6 nodes for the 10’s

encoding for the 50x50. The direction of the receiver only

needs 2 nodes as it is represented using a unit vector,

following the design from [17].

The Compass method has a total of 17 input nodes: 8 for

direction to receiver, 8 for direction receiver is moving, and

1 for distance to receiver. Vector has 5 input nodes: 2 for

direction to receiver, 2 for direction receiver is moving, and

1 for distance to receiver. For all methods, but Vector

Separated, there are two output neurons that represent the

unit vector direction to kick the ball. For Vector Separated

there is just one output neuron that represents either the x

or y value for the unit vector.

After some test runs the number of hidden nodes for all

methods was set to 20, except for Vector Separated where

each neural network only received 10 hidden nodes.

3.3 Examples

Figures 3 and 4 show examples of possible neural network

responses. Both figures show the same scenarios with

different results, figure 3 is the correct output and figure 4

is an incorrect output. In Figure 3 the ball is moving at a

speed of 1, while in Figure 4 the ball is moving at a speed

of 1.41. In the actual experiments the ball will always be

moving at a speed of 2.

In Figures 3 and 4 the red dot represents the receiver, the

green dot represents the sender, and the blue dot the ball.

In Figure 3 the receiver is moving in the direction of 0,-1

(or north) from location 0,10 at a speed of 1. The ball is

moving from location 5,5 in the direction of -1,0 (or west)

at a speed of 1. The ball and sender meet at location 0,5

for a successful pass.

In Figure 4 the receiver is again moving in the direction of

0,-1 from location 0,10 at a speed of 1. The ball, however,

is moving at a speed of 1.41 from location 5,5 in the

direction of -0.707,-0.707 (or north-west). The ball ends

up at location 0,0 while the sender is at location 0,5 and as

such a failed pass.

Figure 3 Correct example [17]

Figure 4 Incorrect example [17]

3.4 Training Data

Ten sets of training scenarios were generated for training

and testing purposes. Each scenario would select a subset

of all possible grid locations for the receiver to start from.

No locations are selected when within 2.5 units of the

sender. For the 10x10 area this equated to roughly half the

total grid locations being selected. For the 50x50 area this

equated to roughly 1/25th the total grid locations being

selected.

Each subset of locations was selected at random in the

following way. For the 50x50 it would loop over the x and

y by steps of 5, but then randomly select a grid location

near that spot. For example, for location 5,5 the location

would be selected from 0,0 to 10,10. A similar approach

was done for the 10x10, just with a smaller step rate. For

the 10x10 there are roughly 38 locations in a subset, rather

than 94 if all valid grid locations had been used. For the

50x50 there are roughly 94 locations per subset, rather than

the nearly 2495 if all valid grid locations were used.

For each grid location selected, 8 random directions are

generated for the receiver to be moving. The 8 random

directions are generated by selecting each compass

direction (N, NE, E, SE, S, SW, W, or NW) and adjust it

randomly by +/- 0.125 in the x and y direction. For

example, if the receiver is moving north (0,-1) then it might

get randomly changed to (0.1,-1.1) and then rescaled to a

unit vector as (0.0905,-0.996). This works out to roughly

304 situations per training scenario for 10x10 and 752

situations per training scenario for 50x50.

4 Solution Description

The Python programming language was utilized to

implement a neural network with one hidden layer. It did

not utilize a bias and used the specialized ReLU discussed

in section 2.1 as the activation function.

During testing it was found which random weights a neural

network started with could occasionally affect its ability to

learn successfully. As such, for each treatment a neural

network was generated with random weights and then

trained on 9 scenario sets and tested on the remaining set.

Additionally, this was repeated 5 times for each treatment

to ensure less chance of any treatment getting unlucky on

the randomly generated weights. Then the best result of

those 5 times was used as a data value for that treatment.

This generated 10 data values for each representation

method.

 10x10 50x50

Abbrev X X

Compass X X

Vec (C) X X

Vec (S) X X

Table 1: Block Design

In Table 1, Abbrev stands for the Abbreviated approach,

Compass for the compass approach, Vec (C) for the

Vector approach with two output nodes, and Vec (S) for

the Vector Separated approach. This designation is used

for all future tables as well.

(5) 𝐸𝑟𝑟𝑋 = ∑(|(𝑋𝑛 − 𝑋𝑒𝑝𝑐)|)

(6) 𝐸𝑟𝑟𝑌 = ∑(|(𝑌𝑛 − 𝑌𝑒𝑝𝑐)|)

(7) 𝐸𝑟𝑟𝑡𝑜𝑡𝑎𝑙 = ∑(|(𝑋𝑛 − 𝑋𝑒𝑝𝑐)| + |(𝑌𝑛 − 𝑌𝑒𝑝𝑐)|)

(8) 𝐴𝑐𝑐 = 𝐸𝑟𝑟𝑡𝑦𝑝𝑒/𝑚

The accuracy of the network is measured based on how far

off the output unit vector was from the correct value using

equations 5-8. Xn is the result for the X unit vector for test

run n, same for Yn with respect to Y. Xepc and Yepc are the

correct values for run n. In equation 8 the total error is then

divided by the total number of examples tested, represented

as m, to give the overall accuracy. The Errtype in equation

8 is either the result for Errx, Erry, or Errtotatal depending on

the accuracy being computed.

5 Results

Approach

(10x10)

Avg

Error

Rise (Y)

Std Dev

Rise (Y)

Avg

Error

Run (X)

Std Dev

Run (X)

Abbrev 0.0270 0.00237 0.0265 0.00246

Compass 0.0142 0.000607 0.0150 0.00126

Vec (C) 0.00467 0.000573 0.00479 0.000473

Vec (S) 0.00285 0.000585 0.00280 0.000582

Table 2: Accuracy Results – 10x10

Approach A Approach B Rise (Y) Run (X)

Abbrev Compass 15.7 12.5

Abbrev Vec (C) 27.5 26.0

Abbrev Vec (S) 29.7 28.1

Compass Vec (C) 34.2 22.8

Compass Vec (S) 40.4 26.4

Vec (C) Vec (S) 6.67 7.96

Table 3: T-test Results – 10x10

Based on the T-scores we can say with confidence that Vec

(S) performed the best, then Vec (C), followed by

Compass, and lastly Abbrev. Just providing the directional

information allowed Compass to reduce the error of

Abbrev by roughly 50%. Additionally, simplifying the

direction information to just a unit vector allowed Vec (C)

to reduce the error of Compass by roughly 66%. Lastly,

splitting the neural network allowed Vec (S) to reduce the

error of Vec (C) by roughly 40%.

Approach

(50x50)

Avg

Error

Rise (Y)

Std Dev

Rise (Y)

Avg

Error

Run (X)

Std Dev

Run (X)

Abbrev 0.0268 0.00180 0.0268 0.00157

Compass 0.0116 0.000632 0.0117 0.000686

Vec (C) 0.00444 0.000224 0.00449 0.000285

Vec (S) 0.00284 0.000549 0.00315 0.000796

Table 4: Accuracy Results – 50x50

Approach A Approach B Rise (Y) Run (X)

Abbrev Compass 23.9 26.5

Abbrev Vec (C) 37.1 42.1

Abbrev Vec (S) 38.3 40.4

Compass Vec (C) 32.1 29.2

Compass Vec (S) 31.4 24.5

Vec (C) Vec (S) 8.10 4.76

Table 5: T-test Results – 50x50

For the 50x50 test area we see the same ordering as from

the 10x10. Compass appears to have improved in relative

accuracy to Abbrev, Vec (C), and Vec (S) in the larger

area. There was little to no change in relative accuracy

for any of the other approaches with the increase in test

area size.

6 Conclusion

First, what would be considered a successful pass. Since

the error is for a unit vector our worst error was 2.7% and

our best result was 0.28%. Distance to the receiver does

matter here, so if the receiver was 100 yards away and the

sender was off by 2.7% then the ball could end up about

3.8 yards off. At 0.28% error the ball would be less than ½

a yard away from the receiver. In the case of 2.7% error

the receiver could adjust their speed to make sure the pass
was successful. As such, it would be reasonable to assume

any of the approaches would be functional in settings

where the receiver can adjust for small amounts of error.

Based on the results it can be concluded that all hypotheses

held. This builds on the work from [17] that the fewer

nodes needed to represent the information the better. It also

opens up the question of is it better to have one neural

network with multiple output nodes or multiple neural

networks each with a single output node. Lastly, while the

ReLU function used here worked well, it still has the 0

gradient problem found in the basic ReLU function. The

standard Leaky ReLU was tested for this project, but not

used here because growing to infinity did impact learning

during testing. This is not an issue for Sigmoid and Tanh.

It would be interesting to create a version of ReLU that

tried to mimic Sigmoid and Tanh more closely. For

example on the edges it could still have a very tiny

gradient, but no actual change in max or min value.

References:

[1] H. Bergkvist, P. Davidsson, and P. Exner,

Positioning with Map Matching using Deep Neural

Networks, MobiQuitous 2020 - 17th EAI International

Conference on Mobile and Ubiquitous Systems:

Computing, Networking and Services, 2020.

[2] Klemmer, Konstantin, Nathan Safir, Daniel B.

Neill, Positional Encoder Graph Neural Networks for

Geographic Data, Proceedings of the 26th International

Conference on Artificial Intelligence and Statistics, 2023.

[3] Perry, Steven J., Create an artificial neural network

using the Neuroph Java framework, IBM Developer. Jan

8, 2018. [Online]. Available:

https://developer.ibm.com/tutorials/cc-artificial-neural-

networks-neuroph-machine-learning

[4] J. Deus, Implementing an Artificial Neural

Network in Pure Java (No external dependencies).,

Medium, 01-Sep-2020. [Online]. Available:

https://medium.com/coinmonks/implementing-an-

artificial-neural-network-in-pure-java-no-external-

dependencies-975749a3811

[5] Lukasz Gebel, Why We Need Bias in Neural

Networks, Medium, 23-Jan-2022. [Online]. Available:

https://towardsdatascience.com/why-we-need-bias-in-

neural-networks-db8f7e07cb98

[6] V. Gupta, Understanding Feedforward Neural

Networks, LearnOpenCV, 20-Apr-2021. [Online].

Available: https://learnopencv.com/understanding-

feedforward-neural-networks/

[7] M. Ibrahim, M. Louie, C. Modarres, and J. Paisley,

Global Explanations of Neural Networks, Proceedings of

the 2019 AAAI/ACM Conference on AI, Ethics, and

Society, 2019.

[8] D. M. F. Izidio, A. P. D. A. Ferreira, and E. N. D.

S. Barros, Towards better generalization in WLAN

positioning systems with genetic algorithms and neural

networks, Proceedings of the Genetic and Evolutionary

Computation Conference, 2019.

[9] A. Malhotra, Tutorial on Feedforward Neural

Network - Part 1, Medium, 02-Feb-2018. [Online].

Available:

https://medium.com/@akankshamalhotra24/tutorial-on-

feedforward-neural-network-part-1-659eeff574c3

[10] S. Mall and S. Chakraverty, Multi Layer Versus

Functional Link Single Layer Neural Network for Solving

Nonlinear Singular Initial Value Problems, Proceedings

of the Third International Symposium on Women in

Computing and Informatics - WCI '15, 2015.

[11] Mazur, A Step by Step Backpropagation Example,

Matt Mazur, 15-Feb-2022. [Online]. Available:

https://mattmazur.com/2015/03/17/a-step-by-step-

backpropagation-example/

[12] Mai, Gengchen, Krzysztof Janowicz, Bo Yan, Rui

Zhu, Ling Cai, and Ni Lao, Multi-Scale Representation

Learning for Spatial Feature Distributions Using Grid

Cells, ICLR 2020, 2020.

[13] Burke, J., J. F. Moynihan, K. Unterkofler,

Extraction of High Resolution Position Information From

Sinusoidal Encoders, [Online]. Available:

https://developer.ibm.com/tutorials/cc-artificial-neural-networks-neuroph-machine-learning
https://developer.ibm.com/tutorials/cc-artificial-neural-networks-neuroph-machine-learning
https://medium.com/coinmonks/implementing-an-artificial-neural-network-in-pure-java-no-external-dependencies-975749a38114
https://medium.com/coinmonks/implementing-an-artificial-neural-network-in-pure-java-no-external-dependencies-975749a38114
https://medium.com/coinmonks/implementing-an-artificial-neural-network-in-pure-java-no-external-dependencies-975749a38114
https://towardsdatascience.com/why-we-need-bias-in-neural-networks-db8f7e07cb98
https://towardsdatascience.com/why-we-need-bias-in-neural-networks-db8f7e07cb98
https://learnopencv.com/understanding-feedforward-neural-networks/
https://learnopencv.com/understanding-feedforward-neural-networks/
https://medium.com/@akankshamalhotra24/tutorial-on-feedforward-neural-network-part-1-659eeff574c3
https://medium.com/@akankshamalhotra24/tutorial-on-feedforward-neural-network-part-1-659eeff574c3
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

https://www.analog.com/media/en/technical-

documentation/technical-

articles/452913422000_sin_encoder.pdf

[14] V. Parmar, Blog: Building a simple neural net in

Java, SmallData. [Online]. Available:

https://smalldata.tech/blog/2016/05/03/building-a-simple-

neural-net-in-java

[15] M. J. Piovoso and A. J. Owens, Neural network

process control, Proceedings of the conference on

Analysis of neural network applications - ANNA '91,

1991.

[16] Tokuyama, Yusuke, Ryo Miki, Yukinobu

Fukushima, Yuya Tarutani, and Tokumi Yokohira,

Performance Evaluation of Feature Encoding Methods

in Network Traffic Prediction Using Recurrent Neural

Networks, ICIET, 2020.

[17] Lewis, Joshua and C. Dudley Girard, Position

Information with Neural Networks, 38th Annual

Conference of PACISE, 2023.

[18] P. Baheti, “Activation Functions in Neural

Networks [12 Types & Use Cases],” v7 Labs, Feb. 02,

2023. https://www.v7labs.com/blog/neural-networks-

activation-functions

[19] Shaikh, Rahil, Choosing the right Encoding method-

Label vs OneHot Encoder, Towards Data Science. 2018.

https://www.analog.com/media/en/technical-documentation/technical-articles/452913422000_sin_encoder.pdf
https://www.analog.com/media/en/technical-documentation/technical-articles/452913422000_sin_encoder.pdf
https://www.analog.com/media/en/technical-documentation/technical-articles/452913422000_sin_encoder.pdf
https://smalldata.tech/blog/2016/05/03/building-a-simple-neural-net-in-java
https://smalldata.tech/blog/2016/05/03/building-a-simple-neural-net-in-java
https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.v7labs.com/blog/neural-networks-activation-functions

	2.2 Learning Process
	2.2 Representing Location
	2.3 Direction Based Approach

	6 Conclusion

