
 

HOW POSITION VS DIRECTION AFFECTS LEARNING TO PASS A BALL 

 

Dr. Girard 

cdgira@ship.edu 

Shippensburg University 

 
ABSTRACT 

Spatial information can be difficult to represent to neural 

networks.  This is because as location values increase in 

value this triggers a stronger response from the neural 

network, such as 5,5 going to 10,10.  However, in many 

cases this is not the desired effect. This research builds on 

previous work to see how the way spatial information is 

presented affects the accuracy of the neural network. This 

research looks at using an abbreviated model of 

representing (x,y) positions verses using direction 

combined with distance.  The problem environment is the 

passing of an object to a moving target.  The overall 

accuracy of each model will be tested and compared to one 

another. 
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1 Introduction 
 

Neural networks learn by updating weights such that they 

can correctly predict the output from a given input.  They 

try to find patterns, so they perform best where inputs do 

not generate conflicting outputs [1,3,7,8,12].  The design 

of the neural network has three key aspects: how many 

nodes in each layer, how the nodes are connected, and how 

values are computed. can vary greatly depending on the 

connection of the input to the output and one input to the 

next [1,3,7,8].  This paper will explore designs to represent 

spatial information to a neural network. 

 

2 Background 
 

Because the value being computed has no bearing on 

previous inputs, the work here uses a standard feed forward 

neural network. A simple feed forward network can be seen 

in Figure 1.  In Figure 1 there are 8 nodes: i1, i2, h1, h2, 

o1, o2, b1, and b2.  The i1 and i2 nodes are the input nodes 

for the neural network and form what is called the input 

layer.  The input layer will take in numerical values, 

usually within a range of 0 to 1, that represent the situation 

being evaluated [1,3,6,7,8,9]. 

 

 

 
Figure 1: Connected Neural Network [11] 

 

The h1 and h2 nodes are the hidden nodes for this neural 

network and form what is called the hidden layer. Each 

hidden node in figure 1 gets input from both input nodes.  

As such the input layer and hidden layer are considered 

fully connected.  This is not required, but is common in 

many feed forward neural networks.  Additionally, h1 and 

h2 are connected to one of the bias nodes, b1.  While the 

models in this paper only used one hidden layer, it is 

possible to have additional hidden layers [1,3,6,7,8,9].  The 

o1 and o2 nodes are the output nodes for this neural 

network and form what is called the output layer.  Each 

output node in figure 1 gets input from both the hidden 

nodes.  Additionally, the output nodes are connected to the 

other bias node, b2 [1,3,6,7,8,9]. 

 

The values for the bias nodes, b1 and b2, are set at the start 

and do not change.  These values are normally used to help 

the neural network overcome an expected threshold.  For 

example, if the input nodes create a large combined 

positive value, the bias node could be set to a negative 

value to adjust this value back down [3,5,9,11].  The 

models used in this study did not have any bias nodes. 

 

2.1 Computing Output Value 

 

The process of providing input values and computing the 

output values in a neural network is called forward 

propagation.  This starts by first setting the values for the 

input nodes. [3,6]. From there, each node in the first hidden 

layer will sum the value of each input node times the 



weight of the connection.  For example, in Figure 1 the 

node h1 would sum the value of i1*w1 + i2*w3.  If there 

are any bias nodes that value is included in the sum as well.  

So, for node h1 it would also add the value from node b1 

to its summation.  After the summation step a node may 

apply an activation function [3,6,9,10,11]. 

 

The role of the activation function is to constrain the values 

produced by a node. Sigmoid, Tanh, and ReLU are 

commonly used for this role [3,6,9,11,17].  Both Sigmoid 

and Tanh were tested with the model, but found both to be 

less reliable than a version of ReLU.  As such only ReLU 

is focused on in this paper. 

 

(1)   𝑅𝑒𝐿𝑈(𝑥) =  {
𝑥 𝑖𝑓 𝑥 > 0
0 𝑖𝑓 𝑥 ≤ 0

 

 

(2)  𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈(𝑥) =  {
𝑥 𝑖𝑓 𝑥 > 0

0.1 ∗ 𝑥 𝑖𝑓 𝑥 ≤ 0
 

 

(3) 𝐴𝐶𝑇(𝑥) =  {

max (2,1 + (x − 1) ∗ 0.01 if x > 1
𝑥 𝑖𝑓 − 1 ≤ 𝑥 ≤ 1

min (−2, −1 + (x + 1) ∗ 0.01 if x < 1
 

 

The basic ReLU activation function, equation 1, converts 

any value less than 0 to 0, and leaves unchanged any value 

greater than 0.  However, having a hard cutoff can have 
unintended effects.  This is where Leaky ReLU, see 

equation 2, comes in.  This version of Leaky ReLU allows 

for slow growth in values when the input is less than 0 

[6,18].  This paper uses a specialized version of Leaky 

ReLU, see equation 3.  This allowed for both positive and 

negative values, no hard cutoff, but also no growth to 

infinity. 

 
Figure 2 - An Artificial Neuron [9] 

 
The full forward propagation process for a node is 

summarized in Figure 2. The process continues until it 

reaches the output layer.  When the output layer’s neurons 

have been evaluated, a decision will be made based on the 

result. This process happens every time a new input is 

given to the network, and everything is computed again 

[3,6,9,10,11].  

 

2.2 Learning Process 

 

The weights of a neural network are usually set to random 

values between -1 and 1.  Because of this, the initial output 

of a neural network usually does not match the expected 

output.  For this to occur the weights are adjusted using a 

process called back propagation. This process starts at the 

output layer and works its way backward through the layers 

as it self-evaluates.  Back propagation starts by first 

determining the amount of error, see equation 4, with each 

output node [4,11,14,15].  

 

(4) 𝐸 =  𝑜𝑢𝑡𝑝𝑢𝑡 −  𝑡𝑎𝑟𝑔𝑒𝑡  [11] 

 

The connected weights to that output neuron are then 

adjusted, see equation 6, based on the activation function 

used, the learning rate, and the amount it contributed to the 

output value.  For the specialized version of Leaky ReLU 

equation 5 computes the rate of change that is occurring 

based on the value of output. Additionally, equation 6 

assumes no use of a bias value.   

 

(5) 𝑎𝑑𝑗𝑂𝑢𝑡 = {
0 𝑖𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 ≤  −2 𝑜𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 2

1 𝑖𝑓 − 1 ≤ 𝑜𝑢𝑡𝑝𝑢𝑡 ≤ 1
0.1 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

 [11] 

 

(6) 𝑤𝑖  = 𝑤𝑖  + 𝜂 ∗ 𝑖𝑛𝑗 ∗ 𝑎𝑑𝑗𝑂𝑢𝑡 ∗ 𝐸 [11] 

 
In back propagation, for equation 5, output is initially the 

result produced by an output node.  Later it will be the 

value for a hidden node.  For equation 6 it is updating the 

weight, wi, for the connection to a node in the previous 

layer.  The value inj is the output value from the node in the 

previous layer. The value η is the learning rate value.  The 

learning rate dictates how much of an impact each learning 

iteration will have [4,11,14,15].  In the first phase of back 

propagation this process is applied to all connections 

between all hidden layer nodes and output layer nodes.  In 

Figure 1 this would mean updating w5, w6, w7, and w8. 

 

(7) 𝐸𝑡𝑜𝑡𝑎𝑙  =  ∑ (𝑜𝑢𝑡𝑝𝑢𝑡𝑛  − 𝑡𝑎𝑟𝑔𝑒𝑡𝑛)1
𝑚  [11] 

 

The total error is used when updating the weights between 

the hidden layer and the input layer or between hidden 

layers.  In equation 7 the total error, Etotal, is computed by 

summing the error for each output neuron. Then, the 

weights are adjusted that connect these layers the same as 

with the weights between the final hidden layer and the 

output layer by substituting Etotal for E in equation 6 

[4,11,14,15].  For example, Etotal would be used to update 

w1, w2, w3, and w4 in Figure 1. 

 

With back propagation, it can be applied to every cycle of 

forward propagation, or it can be applied after multiple 

forward propagations.  In either case, this process is 

effectively repeated until the desired rate of error or 

improvement rate has been reached within the network 

[4,11,14,15].  

 



2.2 Representing Location 

 
Representing location in a neural network is a challenge.  

Due to how neural networks respond to values changing it 

is not possible to simply encode the coordinate locations 

directly [17].  There are a few approaches already in use: 

sinusoidal, clustering, grid, and abbreviated [1,2,12,13,17].   

 

The sinusoidal encoder is based on work related to 

encoding the location on a rotating shaft using sin and cos. 

This approach allows for the location to be represented by 

two values that range between -1 and 1.  It scales well with 

any dimension size and how the values change work well 

within the scope of a neural network [2,12,13].  However, 

it comes with the cost of converting to and from their sin 

and cos representations and as such will not be used here.   

 

In the case of clustering, a fixed number of groups of 

related locations are created.  An approach to encoding this 

data is to use one-hot encoding, where each group/location 

is represented by a single node.  Overall, this approach 

works well when the total number of groups stays the same 

and the neural network does not need to intuit spatial 

information between two groups of points [2,16,19].  

Because of the number of possible locations and need to 
intuit spatial information this approach will not be used.  

 

Grid takes the approach of providing a node for every 

possible location, while also preserving spatial information 

between nodes.  By representing all possible locations in 

the domain, it solves the spatial problem found in the 

cluster approach [1,17].  Unfortunately, unlike the 

sinusoidal approach, using a grid encoding does not scale 

well and as such will not be used here. 

 

An abbreviated approach makes use of one-hot encoding to 

try and turn coordinate information into something that is 

better understood by the neural network.  It takes a 

numerical value and then encodes the value in terms of 

ones, tends, hundreds, etc.  The neural network would have 

a group of 10 nodes for the ones, each one representing a 

specific digit (0-9) and the same for the tens place, etc [17].  

This approach provides the same information as grid, but 

with better scaling.  Additionally, it doesn’t require the 

conversion expense of sinusoidal.  Because of these 

properties it will be one of the approaches used.   

 

2.3 Direction Based Approach 

 

All the approaches above focused on representing spatial 

information by raw location values.  This paper also tries a 

directional approach to representing the information.  

Instead of representing the source and target as locations, 

everything will be represented using relative direction and 

distance. Two approaches will be used to represent 

direction: compass and vector.   

 

In the case of the compass approach, there will be 9 total 

nodes used.  Eight of the nodes are used to represent a 

direction on a compass: N, NE, E, SE, S, SW, W, and NW.  

If the object is between compass locations (e.g. NNW), 

then two nodes (e.g. N and NW for NNW) are used to 

represent direction.  The ninth node is used to represent 

distance to the object. 

 

For the vector approach, there will be three total nodes 

used.  Two of the nodes will hold the x and y values for the 

unit vector representing the direction to object.  The third 

node will then represent the distance to the object.  For both 

the compass and unit vector approach all distances will be 

normalized so they fall within the range of 0 to 1. 

 

3 Experiment Design 
 

The neural network will learn how to pass a ball to a 

moving person called the receiver in a 10x10 and 50x50 

sized grid. This is a similar testing approach to that taken 

in [17].  Two different sized areas are used to see if field 

size affects the performance of each approach.   

 

The input to the neural network is broken up into three 

approaches: Location using abbreviated, Direction using 

compass, and Direction using vector.  The speed of the ball 

and the receiver will be fixed and so are not provided as 

input.  The neural network will then output the direction 

the ball should be kicked. 

 

3.1 Hypotheses 

 

Because passing a ball relies on computing a direction 

usually relative to the receiver it is assumed that providing 

the direction to the receiver reduces the required 

calculations.  So, the first hypothesis is:   

 

Direction based (Compass and Vector) approaches 

will perform better than location only (Abbreviated) 

based approaches. 

 

Additionally, from the work in [17] it appears that more 

data is not always better from the results of grid vs 

abbreviated.  As such the second hypothesis is: 

 

Vector encoding approach will perform better than 

Compass encoding approach. 

 

During testing of the different neural network designs the 

drawback of using total error to update the weights 

between the hidden and input layers came to light.  For the 

output to hidden layer the amount of error for each weight 

is directly tied to a specific output node.  However, for the 

input to hidden layer it is the combined error, which creates 

the chance the individual errors could be in conflict (one 

needs weights increased and the other weights decreased).  

As such, a Vector model is tested that only computes the x 

output of the unit vector and one that only computes the y 

output of the unit vector.  The idea is this approach will be 

able to tune the neural network more accurately, creating 

one more hypothesis: 



 

Vector Separated (one for X and one for Y) will 

perform better than Vector combined. 

 

3.2 Setup Details 

 

The constants in the system are the speed of the ball, speed 

of the receiver, and the position of the sending player, 

called the sender. The receiver’s speed is always set to 1.  

The ball’s speed is set to 2, so it is always faster than the 

receiver. The sender is always placed in the middle of the 

grid, at position 5,5 for the 10x10 grid and 25, 25 for the 

50x50 grid.  The ball is assumed kicked at time 0. 

 

For the Abbreviated method there are a total of 42 input 

nodes for the 10x10: 20 for location of receiver, 20 for 

location of sender, and 2 for direction receiver is moving. 

For the 50x50 Abbreviated needs 66 input nodes: 32 for 

location of receiver, 32 for location of sender, and 2 for the 

direction receiver is moving. Because the options for tens 

place is just 0 to 5, we only need 6 nodes for the 10’s 

encoding for the 50x50.  The direction of the receiver only 

needs 2 nodes as it is represented using a unit vector, 

following the design from [17]. 

 

The Compass method has a total of 17 input nodes: 8 for 

direction to receiver, 8 for direction receiver is moving, and 

1 for distance to receiver.  Vector has 5 input nodes: 2 for 

direction to receiver, 2 for direction receiver is moving, and 

1 for distance to receiver.  For all methods, but Vector 

Separated, there are two output neurons that represent the 

unit vector direction to kick the ball. For Vector Separated 

there is just one output neuron that represents either the x 

or y value for the unit vector.   

 

After some test runs the number of hidden nodes for all 

methods was set to 20, except for Vector Separated where 

each neural network only received 10 hidden nodes. 

 

3.3 Examples 

 

Figures 3 and 4 show examples of possible neural network 

responses. Both figures show the same scenarios with 

different results, figure 3 is the correct output and figure 4 

is an incorrect output.  In Figure 3 the ball is moving at a 

speed of 1, while in Figure 4 the ball is moving at a speed 

of 1.41.  In the actual experiments the ball will always be 

moving at a speed of 2. 

 

In Figures 3 and 4 the red dot represents the receiver, the 

green dot represents the sender, and the blue dot the ball.  

In Figure 3 the receiver is moving in the direction of 0,-1 

(or north) from location 0,10 at a speed of 1.  The ball is 

moving from location 5,5 in the direction of -1,0 (or west) 

at a speed of 1.  The ball and sender meet at location 0,5 

for a successful pass. 

 
In Figure 4 the receiver is again moving in the direction of 

0,-1 from location 0,10 at a speed of 1.  The ball, however, 

is moving at a speed of 1.41 from location 5,5 in the 

direction of -0.707,-0.707 (or north-west).  The ball ends 

up at location 0,0 while the sender is at location 0,5 and as 

such a failed pass. 

 

 
Figure 3 Correct example [17] 

 

 
Figure 4 Incorrect example [17] 

 
3.4 Training Data 

 

Ten sets of training scenarios were generated for training 

and testing purposes.  Each scenario would select a subset 

of all possible grid locations for the receiver to start from.  

No locations are selected when within 2.5 units of the 

sender.  For the 10x10 area this equated to roughly half the 

total grid locations being selected.  For the 50x50 area this 

equated to roughly 1/25th the total grid locations being 

selected.   

 

Each subset of locations was selected at random in the 

following way.  For the 50x50 it would loop over the x and 

y by steps of 5, but then randomly select a grid location 

near that spot.  For example, for location 5,5 the location 

would be selected from 0,0 to 10,10.  A similar approach 

was done for the 10x10, just with a smaller step rate.  For 

the 10x10 there are roughly 38 locations in a subset, rather 



than 94 if all valid grid locations had been used. For the 

50x50 there are roughly 94 locations per subset, rather than 

the nearly 2495 if all valid grid locations were used. 

 

For each grid location selected, 8 random directions are 

generated for the receiver to be moving.  The 8 random 

directions are generated by selecting each compass 

direction (N, NE, E, SE, S, SW, W, or NW) and adjust it 

randomly by +/- 0.125 in the x and y direction.  For 

example, if the receiver is moving north (0,-1) then it might 

get randomly changed to (0.1,-1.1) and then rescaled to a 

unit vector as (0.0905,-0.996).  This works out to roughly 

304 situations per training scenario for 10x10 and 752 

situations per training scenario for 50x50. 

 

4 Solution Description 
 

The Python programming language was utilized to 

implement a neural network with one hidden layer.  It did 

not utilize a bias and used the specialized ReLU discussed 

in section 2.1 as the activation function.  

  

During testing it was found which random weights a neural 

network started with could occasionally affect its ability to 

learn successfully.  As such, for each treatment a neural 

network was generated with random weights and then 

trained on 9 scenario sets and tested on the remaining set.  

Additionally, this was repeated 5 times for each treatment 

to ensure less chance of any treatment getting unlucky on 

the randomly generated weights.  Then the best result of 

those 5 times was used as a data value for that treatment.  

This generated 10 data values for each representation 

method. 

 

 10x10 50x50 

Abbrev X X 

Compass X X 

Vec (C) X X 

Vec (S) X X 

Table 1: Block Design 

 

In Table 1, Abbrev stands for the Abbreviated approach, 

Compass for the compass approach, Vec (C) for the 

Vector approach with two output nodes, and Vec (S) for 

the Vector Separated approach.  This designation is used 

for all future tables as well. 

 

(5) 𝐸𝑟𝑟𝑋  =  ∑(|(𝑋𝑛  − 𝑋𝑒𝑝𝑐)|)  

(6) 𝐸𝑟𝑟𝑌  =  ∑(|(𝑌𝑛 − 𝑌𝑒𝑝𝑐)|)  

(7) 𝐸𝑟𝑟𝑡𝑜𝑡𝑎𝑙  =  ∑(|(𝑋𝑛  −  𝑋𝑒𝑝𝑐)| + |(𝑌𝑛 − 𝑌𝑒𝑝𝑐)|)  

(8) 𝐴𝑐𝑐 =  𝐸𝑟𝑟𝑡𝑦𝑝𝑒/𝑚  

 

The accuracy of the network is measured based on how far 

off the output unit vector was from the correct value using 

equations 5-8.   Xn is the result for the X unit vector for test 

run n, same for Yn with respect to Y.  Xepc and Yepc are the 

correct values for run n.  In equation 8 the total error is then 

divided by the total number of examples tested, represented 

as m, to give the overall accuracy.  The Errtype in equation 

8 is either the result for Errx, Erry, or Errtotatal depending on 

the accuracy being computed. 

 

5 Results 
 

Approach 

(10x10) 

Avg 

Error 

Rise (Y) 

Std Dev 

Rise (Y) 

Avg 

Error 

Run (X) 

Std Dev 

Run (X) 

Abbrev 0.0270 0.00237 0.0265 0.00246 

Compass 0.0142 0.000607 0.0150 0.00126 

Vec (C) 0.00467 0.000573 0.00479 0.000473 

Vec (S) 0.00285 0.000585 0.00280 0.000582 

Table 2: Accuracy Results – 10x10 

 
Approach A Approach B Rise (Y) Run (X) 

Abbrev Compass 15.7 12.5 

Abbrev Vec (C) 27.5 26.0 

Abbrev Vec (S) 29.7 28.1 

Compass Vec (C) 34.2 22.8 

Compass Vec (S) 40.4 26.4 

Vec (C) Vec (S) 6.67 7.96 

Table 3: T-test Results – 10x10 

 

Based on the T-scores we can say with confidence that Vec 

(S) performed the best, then Vec (C), followed by 

Compass, and lastly Abbrev.  Just providing the directional 

information allowed Compass to reduce the error of 

Abbrev by roughly 50%.  Additionally, simplifying the 

direction information to just a unit vector allowed Vec (C) 

to reduce the error of Compass by roughly 66%.  Lastly, 

splitting the neural network allowed Vec (S) to reduce the 

error of Vec (C) by roughly 40%.  

 

Approach 

(50x50) 

Avg 

Error 

Rise (Y) 

Std Dev 

Rise (Y) 

Avg 

Error 

Run (X) 

Std Dev 

Run (X) 

Abbrev 0.0268 0.00180 0.0268 0.00157 

Compass 0.0116 0.000632 0.0117 0.000686 

Vec (C) 0.00444 0.000224 0.00449 0.000285 

Vec (S) 0.00284 0.000549 0.00315 0.000796 

Table 4: Accuracy Results – 50x50 

 

 

 

 



Approach A Approach B Rise (Y) Run (X) 

Abbrev Compass 23.9 26.5 

Abbrev Vec (C) 37.1 42.1 

Abbrev Vec (S) 38.3 40.4 

Compass Vec (C) 32.1 29.2 

Compass Vec (S) 31.4 24.5 

Vec (C) Vec (S) 8.10 4.76 

Table 5: T-test Results – 50x50 

 

For the 50x50 test area we see the same ordering as from 

the 10x10.  Compass appears to have improved in relative 

accuracy to Abbrev, Vec (C), and Vec (S) in the larger 

area.  There was little to no change in relative accuracy 

for any of the other approaches with the increase in test 

area size. 

 

6 Conclusion 
 

First, what would be considered a successful pass.  Since 

the error is for a unit vector our worst error was 2.7% and 

our best result was 0.28%.  Distance to the receiver does 

matter here, so if the receiver was 100 yards away and the 

sender was off by 2.7% then the ball could end up about 

3.8 yards off.  At 0.28% error the ball would be less than ½ 

a yard away from the receiver.  In the case of 2.7% error 

the receiver could adjust their speed to make sure the pass 
was successful.  As such, it would be reasonable to assume 

any of the approaches would be functional in settings 

where the receiver can adjust for small amounts of error.    

  

Based on the results it can be concluded that all hypotheses 

held. This builds on the work from [17] that the fewer 

nodes needed to represent the information the better.  It also 

opens up the question of is it better to have one neural 

network with multiple output nodes or multiple neural 

networks each with a single output node.  Lastly, while the 

ReLU function used here worked well, it still has the 0 

gradient problem found in the basic ReLU function.  The 

standard Leaky ReLU was tested for this project, but not 

used here because growing to infinity did impact learning 

during testing.  This is not an issue for Sigmoid and Tanh.  

It would be interesting to create a version of ReLU that 

tried to mimic Sigmoid and Tanh more closely.  For 

example on the edges it could still have a very tiny 

gradient, but no actual change in max or min value.   
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