
PREPARING AND TEACHING DATA SCIENCE COURSES

Dale E. Parson

Kutztown University of Pennsylvania

parson@kutztown.edu

ABSTRACT

Preparing and teaching realistic data science courses

requires labor-intensive preparation and course delivery. It

is not enough to download data and push buttons on

machine learning tools. First, there must be a human expert

available in the problem domain to supply data and

evaluate work. Without a human expert to provide

information that is missing or incorrect in archived data,

the tendency is to take the output of machine learning

algorithms using potentially faulty data on faith. Second,

any real-world data requires custom scripts for correcting

invalid values, creating derived attributes, and formatting

data for analysis. Then comes the analysis, which is usually

iterative because of incremental discoveries, often

requiring additional data, expertise, data preparation, and

analysis. This case study outlines four domains of data

analysis that have been very useful in teaching and student-

oriented research: 1) analyzing Java programming student

performance as a function of work habits; 2) analyzing

physical and chemical relationships in Pennsylvania stream

flow data; 3) analyzing audio files for waveform type and

noise levels; and 4) analyzing raptor migration counts in

Pennsylvania as a function of climate change.

KEY WORDS

analytics, classification, data cleaning, data science,

machine learning, regression

1. Introduction

This report is a case study on the steps taken to perform

research, prepare materials and projects, teach, and

evaluate student work in upper-level undergraduate and

masters-level graduate data science courses at Kutztown

University. Research in this context refers to incorporating

novel data domains and datasets into course materials that

in some cases leads to publishable results. This approach

does not use toy or well-established example datasets. The

approach uses at least partially new data for each course

offering, giving the instructor and students the opportunity

to uncover data relationships not previous established. The

author relates data science to archaeology as excavation

and analysis of deep patterns in data. If object-oriented

architecture is plumbing, data science is the iterative

application of digging and examining.

The following sections explore topics in a chronological

manner. First, it is essential to identify and enlist human

domain experts in guiding and reviewing results of

automated or semi-automated analysis. Applying

algorithms to data can help create useful analysis, but

algorithms can also mislead by missing relationships or

inferring incorrect relationships in data, for example

inferring causation where there is only correlation.

Applying algorithms can provide new insights to domain

experts, but algorithms can also suggest false conclusions

that human expertise can identify.

Second, it is necessary to locate and obtain data in the

expert’s domain. The expert or third parties may provide

data repositories.

Third, it is usually necessary to clean, organize, and store

the data. Datasets may contain omissions, errors, and

redundant entries. Detecting errors and imputing values for

missing fields [1] may be straightforward using basic

statistical techniques or may require complicated, domain-

specific scripting.

Analysis starts with identification of so-called non-target

attributes – the control variables of these algorithmic

experiments – and target attributes – the experimental

variables. The latter are attribute values we are attempting

to infer. They are tagged onto the dataset in supervised

learning or are missing, to be inferred, in unsupervised

learning. Using tagged datasets is the norm in teaching data

science because the main constructs of interest are the

algorithmically extracted mathematical models that relate

non-target attributes to target attributes. Students and

course projects need complete, accurate, stable datasets on

which to build relationship models. Unsupervised learning,

i.e., predicting the future from past examples and past

learning, first requires learning in a stable environment.

Analysis is the final stage in this report. Analysis is an

iterative process. Attribute elimination, augmentation, and

derivation may be suggested by examining intermediate

results. Data visualization may suggest next steps in this

iterative process.

The sections that follow take up each of these stages in turn

in terms of the author’s teaching experience. Rather than

presenting a sequence of projects, this report presents a

sequence of stages, with the same 4 projects per stage.

2. Enlisting a Domain Expert and Their Data

2.1 Correlating student programming habits to grades

Our first case study relates programming student behavior

in a sophomore-to-senior Java programming course to

project letter grades (classification) and project numeric

grades (regression) [2-4]. These grades served as target

attributes to be predicted from other attributes. The author

served as the primary domain expert in this and in two of

the remaining three case studies, with faculty peers and

graduate students contributing expertise where needed in

this one. It was important to build competence in using

tools, libraries, and in performing analysis before venturing

outside the author’s domains of expertise.

Most of the data were collected automatically using

makefiles in the Unix programming environment when

students performed compile, test, and project submit steps.

A few survey questions about other courses, projects, and

exams that competed for time and attention accompanied

each project. The proposed project went through the

university’s Institutional Review Board (IRB) approval

process, and students signed IRB-approved forms granting

or denying participation. An optional makefile target could

turn off data collection. All 31 students in the two spring

2013 sections and 39 students in the two spring 2014

sections of Java Programming participated.

There were 90 attributes in the data collected in 2013,

including student time of work per session, number of

sessions, code lines added / deleted / changed, success or

failure of compile & test operations, timestamps on files,

and others detailed in [2]. A set of Python scripts integrated

project grade data and other data discussed in Section 3.

In spring 2013 the author also taught a graduate course

intended for study of the internals of database management

systems, but with permission of the department chair,

borrowed over half of the semester to explore analysis of

data from PA stream flow sensors outlined in Section 2.2

using the Weka toolkit [5,6]. This graduate course offering

was the genesis of the data science courses at Kutztown

University. The graduate students served as auxiliary

domain experts in suggesting Java student behavior data to

collect. No data outside project edit, compile, test, and

submit actions, survey answers, project grades, and

incoming computer science GPAs (grade point averages)

were collected. Student IDs were obfuscated, and the

author did not include data such as gender and race that

might lead to reverse identification of students.

2.2 Correlating PA stream flow properties

The author served as the domain expert for this study,

based on two years of experience with his high school son

volunteering as monthly water samplers and data collectors

for the Maiden Creek Watershed Association several years

earlier [7]. We acquired additional expertise in stream

heights, flow rates, and turbidity by kayaking flooded PA

streams from 2004 through 2007. Expertise in this and

other environmental studies was augmented by suggestions

from the author’s nephew, who holds a Ph.D. in

environmental engineering and is a lead engineer for a

contract company working with the Federal Emergency

Management Agency (FEMA) and other agencies on flood

plain and related data analysis.

Course data came from on-line databases supplied by the

US Geological Survey (USGS) [8]. The author limited the

scope of the project to PA streams and rivers. The

following are the primary attributes used from 46

automated sampling sites with over 490,000 stream sample

records. Sites were selected based mostly on available

measured attributes.

• timestamp measured

• pH measured

• TempCelsius measured

• Conductance measured

• GageHt measured

• DischargeRate measured

• TimeOfYear derived attribute

• Month derived attribute

• MinuteOfDay derived attribute

• MinuteOfYear derived attribute

• OxygenMgPerLiter measured

USGS stream data are available as text reports requiring

scripted conversion to comma separated value (CSV) files.

After some preliminary analysis, OxygenMgPerLiter

served as the tagged, target attribute to be predicted from

other attributes. We continue to extend and use PA stream

data in more advanced analysis.

2.3 Correlating audio signal properties

The author again served as the domain expert, having

worked in industry for over a decade as a software architect

and developer for tools used to debug embedded audio

signal processing applications in telephony [9].

The data used from spring 2020 through fall 2023 for two

projects per semester were generated using statistical

sampling techniques for standard audio reference

properties via the ChucK audio programming dataflow

language [10]. The tagged target classification attribute is

waveform type from the standard reference set {sine,

triangle, square, sawtooth, pulse}, and the tagged numeric

regression attribute is white noise level, where white noise

is uniformly distributed random signal levels across the

audible frequency spectrum. We have used 10,005

instances so far; 5 are noiseless training instances for the

standard {sine, triangle, square, sawtooth, pulse} set. One

derived dataset has as non-target attributes the first 32

strongest signal frequencies and amplitudes for

classification of waveform class, and another for white

noise regression has statistical distributions of mean,

median, min, and max for signal levels across the full

audible spectrum. The raw data are .wav audio files.

Feature extraction is discussed in the next section. Figure 1

shows a single cycle of reference audio waveform types

generated in the author’s fall 2023 undergraduate Python

scripting course. The author has tentative plans to replace

ChucK signal generation with Python libraries. The signal

range of [-32768, 32767] in Figure 1 corresponds to the

standard 16-bit representation in .wav files.

Figure 1: Visualizing reference audio waveforms

2.4 Correlating climate properties to raptor counts

The domain expert for this fourth case study is Dr. Laurie

Goodrich, lead researcher at the Hawk Mountain Sanctuary

(HM) in eastern Pennsylvania [11]. The author has been a

member of the sanctuary for many years. One of the

premiere activities of the sanctuary has been the annual

autumn counting of 23 raptor species during fall migration.

There are 88 years of data from 1934 through 2021, with

integration of data from 2022 and 2023 in the author’s

work queue.

HM volunteers began recording climate data such as

temperature, wind speed, wind direction, visibility, and

cloud cover consistently starting in 1976. 1976 through

2021 gives us 46 years X approximately 100 days during

the migration season X 12 median observations per day,

yielding 55,200 discrete observation records (exact current

count is 55,826), usually of a 60-minute duration.

Volunteers perform the observations and Dr. Goodrich

deploys the data in Excel spreadsheet format that the author

converts to CSV for Python data cleaning.

The primary target attributes are the individual species’

raptor counts and their long-term trends. This project is

especially oriented towards time-series trend analysis of

correlations between climate changes and raptor counts.

The author and students began working with Dr. Goodrich

in fall 2019, and incremental data deployment and analysis

is ongoing. The author received a grant from the Kutztown

University Research Committee for a summer 2022 stipend

and funding for several student workers. The author has

used these data extensively in data science courses.

Figure 2 shows Hawk Mountain’s primary observation and

data collection point at North Lookout. The ridge leading

away is the Kittatinny Mountain, going northeast into

northern New Jersey. Behind the camera the ridge falls to

the valley, with the remainder of the Kittatinny Mountain

continuing about a mile to the south on a southwest ridge

to central PA, disconnected from North Lookout by the

interposed valley of the Eckville Fault. Updrafts on the

northern side of the ridge, to the left in the photo, provide

lift and energy for locomotion for migrating raptors.

Figure 2: North Lookout at Hawk Mountain Sanctuary

The author prefers having students get physical contact

with their data sources when possible. Figure 2 shows

students at North Lookout after Dr. Goodrich gave us an

expert presentation in September 2019. Unfortunately,

COVID protocols made an in-person visit impossible in

2020-2021. The Kutztown Women in STEM student club

and the author have a similar visit planned for April 27,

2024. One graduate student has completed a master’s thesis

and another is performing supervised research in this

domain.

2.5 Summary: data domain expertise

An instructor had best start with problem domains for

which they have some level of expertise. They are learning

algorithms, tools, techniques, and pedagogical approaches,

activities that constitute a serious workload, without

acquiring new domain knowledge or engaging external

experts at the same time. Only after several course

offerings is it time to find a domain with an external expert.

Figure 3 illustrates one concrete example of why working

with an expert in analyzing a domain that is new to the

faculty member is essential. The lines in Figure 3 illustrate

total annual counts for dominant wind directions in the

range N, NNE, NE … WNW, NW, NNW, and UNK, with

the latter representing no dominant wind direction during

observation periods. Notice the green NW line that

plummets going from 1994 to 1995. The author took that

plummet at face value during initial analysis, looking to

correlate it with declining raptor counts. Subsequent

discussion with Dr. Goodrich revealed that, “1995 is the

year that observers started using three-letter wind direction

designations such as WNW.” In fact, close examination of

the red WNW line buried in Figure 3 revealed that this

count rose at the same time that NW plummeted.

Subsequent analysis was necessary to find how to integrate

new WNW and NNW counts back into NW to establish

data consistency. The result is that WNW alone integrates

back into NW in order to synchronize with preceding years.

This fact is significant because WNW and NW winds

create updrafts that raptors use to coast along the northern

side of the Kittatinny Ridge.

Figure 3: Apparent precipitous drop in NW wind in 1995

3. Cleaning, Organizing, Correcting Data

3.1 Java programming student data preparation

The author wrote 3525 non-blank lines of Python code in

13 scripts and libraries to integrate data from automated

makefile collection of student build / test / submit actions,

surveys, grade information, and other course roster data

into a CSV file for analysis of the spring 2013 dataset.

These numbers jumped to 4247 non-blank Python lines in

14 scripts and libraries because of an extension to perform

new within-students analysis discussed in Section 4.1.

A potential problem presented by any data preparation

stage with a lot of custom scripts is that of injecting errors

into the dataset thanks to buggy code. For this project the

author used grant funds to employ a student who had

earned a grade of A in the 2013 course [2,3]. She had

access only to her own raw data generated by the makefiles,

the surveys, and the auxiliary data inputs. She used Excel

on her own data to duplicate data preparation steps outlined

by the author. When we compared her CSV file created

within Excel to the author’s created by Python scripts, there

were some substantial differences. It turned out that the

student was using the output of her first edit / build / test

session as the starting data point in the project sequence,

while the author was using the unchanged state of the

handout code. When she updated her Excel calculations to

use the handout code as the starting point, our CSV files

lined up exactly to within trivial rounding differences. In

current projects we compare numeric results using the

Python math library’s isclose() function that implements

almost-equals testing within default or explicit tolerances

[12]. Ignoring minor rounding differences is essential in

derived data verification.

Having independent means for verifying data cleaned,

aggregated, and structured by scripts that may contain bugs

is essential for establishing veracity of integrated data and

its analysis.

3.2 PA stream flow data acquisition and preparation

In 2017 the author wrote 504 non-blank lines of Python

code in 2 scripts to parse textual data downloaded manually

from the USGS web site [8] to create CSV files with the

attributes enumerated in Section 2.2. This Python code

relies on Python’s regular expression library re in coding a

parser for the text data [13]. Manual comparison of samples

of the 8-attribute automated observations of Section 2.2 to

CSV records was adequate for verification, augmented

with a calculator to check the four derived attributes.

Some student assignments include familiarization with the

re library in parsing and structuring textual data. In 2017 a

graduate student introduced the class to the interactive

pythex utility for testing regular expressions [14].

If analyzing water data were our primary project, it would

be possible to write a web scraper to download data only

for select sites containing the desired measurement

attributes and other attributes such as location. Manual use

of the USGS site requires specifying certain data

constraints such as required attributes and location. While

the instructor continues to use one USGS water project in

some courses, the number of data collection sites needed

does not justify spending time writing a web scraper.

3.3 Generating and extracting audio signal properties

A Python script generates a set of executable ChucK scripts

[10] – ChucK is an application specific dataflow language

for generating sound and music – one per .wav file, with

signal gains uniformly distributed between 0.5 and 0.75,

and white noise gains between 0.1 and 0.25, where 0.0 is

no signal and 1.0 is the normalized maximum signal

strength. The generator creates equal numbers of {sine,

triangle, square, sawtooth, pulse} waveforms, one per

generated ChucK script. A shell script then executes these

ChucK scripts, one at a time, to create .wav files of one

second duration.

Listing 1 shows the ChucK dataflow code for generating a

triangle waveform with a fundamental frequency of 999

Hertz (cycles per second), a signal gain of approximately

0.675, and a white noise gain of 0.201into a .wav file of 1

second duration. The unique serial number of this .wav file

is 183046. Tagged parameter values are embedded in the

.wav file names. In Listing 1 the “dac” is the digital-to-

analog converter that drives a loudspeaker. The dataflow

sends the dac’s output to the WvOut object __w__ that

stores the .wav file. These projects have generated 10,005

such .wav files, 2001 per waveform class. Figure 4 gives a

schematic dataflow view of the code in Listing 1. Arrowed

lines show generated signal flow direction.

Listing 1: A ChucK dataflow script that generates a .wav file

Figure 4: The signal dataflow of Listing 1 ChucK code

These audio projects used a cryptic Chuck signal analysis

script for reading a .wav file and extracting frequency and

signal strength measurements from it as non-target

attributes for machine learning tools outlined in Section

4.3. This script saves these non-target attribute values in a

text file whose name contains the tagged, target attribute

values including waveform class, signal fundamental

frequency, signal gain level, and white noise level.

The point here is not to learn this audio problem domain or

to decode ChucK dataflow scripts for signal generation and

analysis. The point is that domain expertise and one or

more domain experts are required to guide student projects

in data analysis. This is not just a matter of pushing

machine learning tool buttons.

In a fall 2023 course the author had some success, both in

terms of simplifying coding by sticking to Python, and in

terms of flexibility of analysis, by using the SciPy libraries

[15] for reading .wav files and extracting non-target

attribute values from them. Tagged target attributes are

extracted from the .wav file names as discussed. Moving

signal generation and extraction to Python opens up these

stages for student coding in a language they know.

3.4 Climate and raptor data cleaning and structuring

Hawk Mountain climate and raptor observation data are

collected by volunteers on an isolated lookout that is often

cold and windy. Even though Hawk Mountain deploys

their records as Excel files, the presence of several classes

of errors required the most substantial Python data cleaning

of these four case studies [16,17].

The first problem encountered is that the data from 1934

through 1975 are missing most climate attributes such as

air temperature, wind speed, and wind direction. A

master’s thesis student and the author integrated weather

data from the Allentown, PA Airport downloaded from a

National Oceanic and Atmospheric Administration

(NOAA) website [18] into our dataset. Analysis uncovered

the fact that the Lehigh Valley in which the airport resides

suffers from the Heat Island Effect [19], creating climate

conditions that do not correlate well with the weather on

North Lookout, which is more subject to winds from the

northwest and which cools thoroughly at night. The author

has discarded this airport data in ongoing research, and has

limited trend analysis to 1976 through the present, when

weather conditions are in the deployed data.

The next problem is that some missing HM data, especially

temperature records that should have been recorded as

missing, were recorded in a substantial number of cases as

a series of 0 Celsius numbers. It was necessary to write

Python code that attempts to distinguish legitimate 0

records from missing data. The Python script inspects

adjacent observation periods for fluctuation of

temperatures that may make 0 crossings but that also have

some non-0 values for nearby observations on the same

day. Python converts a string of all zeroes for a day into

missing, unknown value entries. In a related data problem,

early years did not record cloud cover percentages, but they

were sometimes entered as zeroes. These also needed to be

marked as unknown.

A related problem was invalid temperature records that

would have boiled or evaporated volunteer observers. For

example, what appears to have been intended as a record

of 24 degrees C (75.2F) was entered as 2424 C (4395.2 F).

The volunteer simply wrote “24” twice. The Python script

checked for temperature values outside of 2.5 standard

deviations for the day, marking them as unknown.

Some raptor counts for an “all” category, for example the

sum of immature and adult individuals of a species, did not

TriOsc generator => Gain mixer => dac ;

Noise noisey => Gain noisegain => mixer ;

999 => generator.freq ;

0.675189571038 => generator.gain ;

0.201025367482 => noisegain.gain ;

dac => Gain __g__ => WvOut __w__ => blackhole;

"lazy1_TriOsc_999_0.675189571038_0.2010253674

82_183046.wav" => __w__.wavFilename ;

1::second => now ;

null @=> __w__;

match the actual sum of the sub-category counts. Our

analyses use only the “all” counts. When they do not match

the sum of the sub-counts, we use the larger of the recorded

“all” entries and the sum of the sub-categories. The sub-

categories vary by species.

Hawk Mountain began using 3-letter wind direction entries

such as WNW for west-northwest in 1995. Volunteers

occasionally rearranged these letters, for example

recording NWW for WNW. Python cleaning was a matter

of permuting the letters and picking the correct, canonical

arrangement. As previously noted, prior to 1995 a wind

direction of WNW was just recorded as NW. It became

necessary to combine NW and WNW counts into an

aggregate value from 1995 onward, to align later

recordings with the lower resolution recordings before

1995. Note that WNW could have been just as readily

recorded as W, since WNW lies between W and NW on

the compass. Determining that WNW and NW should be

combined starting in 1995, instead of WNW and W,

required linear trend analysis in these and other 3-letter

wind directions introduced in 1995.

3.5 Summary: cleaning, organizing, & correcting data

A general observation is in order. The more people

involved in data generation, e.g., Java programming

students in Section 3.1 or Hawk Mountain volunteers in the

current Section 3.4, the more necessity for inspecting and

cleaning data. The stream sensors of Section 3.2 are

generally reliable, although they may fail, data

transmission packets may fail to deliver, and extremely

cold weather may affect sensor accuracy, but the sensors

and automated data collection tend to be reliable.

Stochastically generated audio of Section 3.3 in these

studies is the most reliable. Collection of real-world audio

recordings and data streams may suffer from some

transmission, storage, and lossy signal problems, but even

they should be pretty reliable.

Manual entry of large datasets, and datasets that span large

intervals in time during which data collection procedures

change, are the ones most likely to need preliminary human

analysis to determine the need for cleaning at an early stage

just after collection. Hawk Mountain manual data

collection, and addition of attributes such as temperature,

later cloud cover, and change from observing treetops to

using ground-level wind gages to measure wind speed, are

examples of potential sources of data errors and changes in

processes that need to be massaged.

Human coding of more complex data integration or

cleaning scripts such as those for Java programming

students in Section 3.1 require validation that does not use

the scripts to validate themselves. Both data entry and data

manipulation via scripts require careful inspection for

patterns of errors such as those discussed in Section 3.

4. Iterative Analysis

This section outlines approaches and results of analysis of

the four case studies in very general, summary terms. The

reader is directed to published papers enumerated in the

Reference section for process details and results of these

data analyses.

4.1 Analyzing Java programming student activities

The analysis of the 31 Java programming students in the

two spring 2013 sections took the form of regression

modeling in Weka [6] of non-target attributes such as

starting time on projects, length of work sessions, time of

day of work sessions, and magnitude of code changes per

session, to numeric project grades [2]. Linear models

unearthed the most important behavioral attributes, two of

which appear here.

Figure 5: Project grade as a function of starting time

Figure 5 shows mean project grade as a function of mean

student starting time before the due date (Jstr) on a span of

456 hours (2.7 weeks) to 24 hours in bands according to
incoming computer science grade point average (Cgpa). In

roughly the last 12 days of a project schedule, project

grades slope downward; starting a project within 24 hours

of its due date costs 20 points, 2 full letter grades, compared

to starting it at least 12 days before its due date.

Figure 6 shows mean project grade as a function of mean

work session length in minutes. A work session consists of

consecutive makefile build and / or test actions with no

gaps greater than 15 minutes between such actions. Grades

for all Cgpa bins less than or equal to 3.0 drop off for

average work sessions that are less than 60 minutes.

After adding 39 students in the two spring 2014 sections of

Java Programming to the 31 students of the previous year,

we performed additional analytical steps [3]. Data analysis

is usually an iterative process in which one cycle of

investigation uncovers the need for additional derived data

attributes and subsequent analysis. An added analysis

considers project data only for students with a project grade

Gprj spread of at least 20% between their best and worst

project grades. Different students occupy different overall

grading bands, but each shares the fact that the difference

between their best and worst Gprj is at least 20%.

Figure 6: Project grade as a function of work session length

Figure 7: Within-student grade as a function of starting time

Figure 7 shows the mean within-student performance on

project grade as a function of starting time before the

deadline. Project grades scaled as the mean fraction of each

student’s best grade plummeted by 10% to 15% by

procrastinating from the 2-week handout of an assignment

to 24 or even 12 hours before it was due. We also analyzed

skipping some days after an early start and found that on

average only half of such days required actual work to be

done. Presumably, an early start gives a student a sample

of how difficult the project will be, and therefore how much

leeway there is in working every day.

The uptick for Cgpa >= 3.0 at 24 hours led us to investigate

the concept of active procrastination. [20,21]. Active

procrastinators tend to have many projects engaged in the

early part of an assignment period. They have adopted an

optimization strategy of deferring work until it is

necessary. Some active procrastinators also increase their

flow – their focus – by waiting until work is necessary.

Note that the uptick in Figure 7 at 24 hours occurs only for

students with high Cgpa, and only for a very small fraction

of those high-Cgpa students. Passive procrastinators, in

contrast, defer work out of avoidance or poor time

management skills. They do not do well. Figure 8 shows

that within-student performance also drops off when mean

work sessions are less than an hour long.

The author has used these analyses in scheduling classes.

All classes take place in computer lab classrooms, all

classes are at least 75 minutes long, and the author gives

students at least a 60-minute work session at the start of

each project cycle, after they have had a weekend to read

the assignment materials. Thus, both the Jstr lead time and

the Mavg work time constraints for grades are met.

Figure 8: Within-student grade as a function of work session

4.2 Analyzing USGS stream flow data relationships

Analysis of the USGS PA stream flow data [8] was the first

of the author’s data science projects used by students. Two

essential points are that 1) the USGS PA stream flow data

analysis was not a novel research project and, 2) verifying

results relied on research papers that had already been

published. Having a stable target analysis in the form of

established scientific facts was essential for giving our first

data science students reliable projects.

The author and students used Weka regression models to

establish the relationships of the non-target attributes

enumerated in Section 2.2 to OxygenMgPerLiter

(dissolved oxygen in milligrams per liter). Figures 9 and 10

use Weka scatterplots to graph the main points. Each data

record in one year’s recording of 46 automated sampling

sites, with over 490,000 records in all, appears as a point in

these scatterplots. Figure 9 shows the level of dissolved

oxygen lowest during the summer, caused by the inverse

relationship of water temperature and the ability of water

to hold dissolved oxygen [22], accounting for the overall U

shape of Figure 9, with the low point in midsummer.

In the third course in which we used PA stream flow data

the author had the students “crowd source” the selection of

water sampling sites to use as training data. There are a lot

of potential training sites and a good number of students.

Ideally, training data should be distinct from testing data,

so as not to “load the dice,” so to speak. Training data

should be a representative cross section of overall data. It

should not bias trained machine models towards special

cases, a condition called “over-fitting”. Students were

searching the space of potential training data sites in

parallel. The most inappropriate sites were those missing

several months of data for the year.

Figure 9: Dissolved O2 as a function of day of year

One of the students came to office hours with graphed data

from one of their assigned sampling sites on the Schuylkill

River in Philadelphia. Their data showed an upward spike

in dissolved oxygen during a few days in the first week of

July, followed by a rapid decline back to typical numbers.

We could find nothing special in searching for the date.

Later that week the author inspected data from two sites

upstream from that site, one near Norristown and another

further upstream near Royersford. What the author found

was that the upstream sites’ O2 levels spiked a few days

earlier, and that upstream spikes were a little lower. The

author did a literature search and found that an exponential

growth in stream plant life in late June or early July,

followed by a fallback in plant density, was an established

scientific fact. Photosynthesis from the exponential plant

growth accounts for the spikes. Different spikes at different

times from different sites appear in the highlighted region

of Figure 9.

Figure 10 shows these same records, this time graphing

dissolved oxygen as a function of the minute of the day.

Since there are the same minutes of the day in all 4 seasons,

most of Figure 10 just averages out any pattern. However,

note the highlighted outlier instances near the top right of

Figure 10, from late morning through the evening. That

region shows the existence of increases in O2 levels in a

diurnal pattern from late morning through evening, thanks

to sunlight-induced photosynthesis. Plotting or modeling

only the months of the growing season show daily rises and

falls in O2 levels thanks to diurnal photosynthesis.

Using data that reveals established scientific facts, and

using student crowd sourcing to investigate potential

training data sources, are two pedagogical findings from

this PA stream flow case study.

Figure 10: Dissolved O2 as a function of minute of day

4.3 Analyzing .wav files for classification & regression

Unlike the Java programming student data, the stream flow

data, and the climate-to-raptor count data, the author had

complete control over the creation of the .wav file audio

dataset and its anticipated analysis.

Figure 11: Frequency domain histogram of a square wave

Figure 11 shows a frequency-domain plot of a 1000 Hz.

(cycles per second) square wave with a signal gain of 0.74

on a scale of 0.0 to 1.0, and a white noise gain of 0.16. This

plot is essentially a histogram of signal strengths at

frequencies across the audible range of 0 to 22,050 Hz.,

with the upper harmonics elided to reduce figure size. The

fundamental frequency of 1000 Hz. is labeled 1st at the top.

A square wave consists of only odd harmonics – 3000 Hz.,

5000 Hz., etc. for a 1000 Hz. fundamental frequency – with

those odd harmonics decaying in level at an established

rate. Triangle waves also populate only odd harmonics, but

at a different decay rate than square waves. Sawtooth

waves and pulse waves populate even and odd harmonics

but at differing decay rates. Sine waves populate only the

fundamental (1st) frequency. The harmonics and their

decay rates act as signatures for waveform type

classification.

After several course offerings using these waveforms, the

author determined a data representation approach that

yields the most accurate classification of waveform types.

Normalize the strongest, fundamental frequency to 1.0 and

its amplitude in the histogram of Figure 11 to 1.0. These

are attributes freq1 and ampl1. The second strongest

frequency in the data is freq2 as a multiple of freq1, and its

amplitude ampl2 is a fraction of ampl1. Continue through

the 32 strongest amplitude peaks, normalizing the

frequencies as multiples of freq1 and their amplitudes as

fractions of ampl1. This data representation approach

provides perfect results for classification of waveform

type. Below is the Weka OneR rule that considers only a

single non-target attribute and yields a perfect

classification for 10,005 .wav files. The decayed amplitude

of the first multiple of the fundamental frequency, relative

to the fundamental amplitude, is enough of a “finger print”

to distinguish the waveform type.

ampl2:

 < 0.056232 -> SinOsc, < 0.223464 -> TriOsc

 < 0.415814 -> SqrOsc, < 0.7182685 -> SawOsc

 >= 0.7182685 -> PulseOsc

The point for this case study is that the most effective data

representation format for analysis may not be the most

obvious or the simplest mapping of the raw data. It took

several iterations of analysis of this dataset to arrive at its

most effective structure for classification of wave type.

An even later discovery of the best data representation

format for the white noise level occurred in a course in fall

2023. The white noise gain of 0.16 accounts for the non-

harmonic squiggles in Figure 11. While white noise is in

principle uniformly distributed across the frequency

spectrum of Figure 11, true uniform distribution is

approached only as the number of sample values in the

histogram approach infinity. There are 22,050 points in

Figure 11’s histogram, so non-uniformity in levels induced

by white noise appears.

In fall 2023 we took the statistical min, max, mean, and

median of all values in each .wav file frequency domain

histogram, and correlated those statistical measures to the

white noise gain. What we found is that the median signal

level correlates very closely with white noise gain. Min and

max by their nature are extremely non-uniform, leaving

mean and median. Max in particular is affected by the non-

noise signal gain. Moreover, extremes of either min or max

can weigh on the mean more than on the median. In the full

dataset of over 490,000 audio samples, median has a

correlation coefficient of 0.964257 with the tagged, target

white noise gain level, where a correlation coefficient of

1.0 is perfect correlation and of 0.0 is no correlation. The

mean of values in each histogram, in contrast, has a

correlation coefficient of only 0.063363. Mean is pulled

away from the white noise level by the signal peaks.

Again, the point for this case study is that the most effective

data representation format for analysis may not be the most

obvious or the simplest mapping of the raw data. It took

even more iterations of analysis of this dataset to arrive at

its most effective structure for regression of white noise

gain than it did for classification of wave type.

4.4 Analyzing climate change to raptor correlations

The page limit and prospective length of this discussion

prohibit doing it here. The reader is directed to an extensive

write-up from the summer of 2022 and the summer of 2023

[16,17]. Dr. Laurie Goodrich’s expertise, the Hawk

Mountain datasets, and the time to investigate them have

been invaluable in upper-level and graduate data science

courses and in one master’s thesis.

The current state of this research is summarized at the

bottom of reference [17]: “For the prime observation

months of October and November … wind speed measures

that correlate strongly with declining raptor species counts

are consistently declining during observation periods.

There are three potential hypotheses about the declining

raptor counts. A) Diminishing updrafts on the north-

northwest side of the Kittatinny Ridge are leading the

raptors to cross the mountain at more widespread locations

instead of funneling them past North Lookout and across

the Eckville Fault. B) Raptors are wintering further north,

perhaps due to increasing temperatures. C) Raptor

populations are declining in numbers. The next step in this

investigation is to look for trends in the raptor counts

during the spring, northerly migration. If there has been no

significant change in the last quarter century, that would

indicate alternative (A).” The author and a graduate student

will continue to explore this data in summer 2024.

5. Conclusions

Having access to domain experts and their data, learning to

identify data deficiencies and to code scripts to clean,

augment, and structure them, and acquiring the knowledge

and skills to apply machine learning models for data

relationships are all essential, non-trivial aspects of

preparing and teaching a substantial data science

curriculum. Sections 2.5 and 3.5 provide conclusions for

data domain expertise, data acquisition, and data

preparation. Like data analysis, teaching data science is an

iterative, deepening process.

While the data domains and projects surveyed in this report

are custom and unique to the author’s courses, students are

welcome to use off-the-shelf data sources such as Kaggle

in doing individual projects in several courses [23].

6. Acknowledgements

Dr. Laurie Goodrich of Hawk Mountain Sanctuary has

supported that research project in ways that deserve the

author’s and students’ thanks. Dr. Lisa Frye, the author’s

department chair, has been very supportive of this

adventurous curricular exploration.

References:

[1] Bilogur, Aleksey, “Simple techniques for missing data

imputation”. Kaggle Notebook, 2018,

https://www.kaggle.com/code/residentmario/simple-

techniques-for-missing-data-imputation/notebook.

[2] D. Parson and A. Seidel, “Mining Student Time

Management Patterns in Programming Projects,”

Proceedings of FECS'14: 2014 Intl. Conf. on Frontiers in

CS & CE Education, Las Vegas, NV, July 21 - 24, 2014.

[3] D. Parson, “Using Weka to Mine Temporal Work

Patterns of Programming Students,” Tutorial at 2014 Intl.

Conf. on Frontiers in CS & CE Education, Las Vegas, NV.

[4] D. Parson, L. Bogumil & A. Seidel, “Data Mining

Temporal Work Patterns of Programming Student

Populations,” Proceedings of the 30th Annual Spring

Conference of the Pennsylvania Computer and Information

Science Educators (PACISE) Edinboro University of PA,

Edinboro, PA, April 10-11, 2015.

[5] Witten, Frank, Hall, Pal, Data mining: practical

machine learning tools and techniques, fourth edition, (San

Francisco, CA: Morgan Kaufmann / Elsevier, 2016).

[6] Witten, et. al. “Weka 3: Machine learning software in

Java,” https://www.cs.waikato.ac.nz/ml/weka/index.html,

1993-2024.

[7] Maiden Creek Watershed Association,

https://berksnature.org/water/maiden-creek-watershed-

association/ .

[8] US Geological Survey, “USGS Water Data for the

Nation,” historical data, https://waterdata.usgs.gov/nwis.

[9] D. Parson, P. Beatty and B. Schlieder, “A Tcl-based

Self-configuring Embedded System Debugger,”

Proceedings of Fifth Tcl/Tk Workshop, USENIX, July,

1997.

[10] ChucK Team, “ChucK Music Programming

Language”, https://chuck.stanford.edu/ , 2003-2024.

[11] Laurie Goodrich, Ph.D., “Sarkis Acopian Director of

Conservation Science,” Hawk Mountain Sanctuary,

https://www.hawkmountain.org/about/community/staff/la

urie-goodrich.

[12] Python math library for the isclose(), almost-equals

function, https://docs.python.org/3/library/math.html.

[13] Python re library for parsing text via regular

expressions, https://docs.python.org/3/library/re.html.

[14] The pythex utility for testing re regular expressions,

https://pythex.org/.

[15] Documentation for the SciPy scientific computing

library, https://docs.scipy.org/doc/scipy/.

[16] D. Parson, “Analysis of Hawk Mountain Sanctuary

Observation Data from 1976 through 2021,” white paper,

https://research.library.kutztown.edu/cisfaculty/20/ , 2022.

[17] D. Parson, “Analysis of Hawk Mountain Wind Speed

to Raptor Count Trends from 1976 through 2021,”

https://research.library.kutztown.edu/cisfaculty/19/ , 2023.

[18] National Oceanic and Atmospheric Administration

(NOAA), National Centers for Environmental Information,

Allentown Lehigh Valley International Airport data, 1948

through 2021. https://www.ncdc.noaa.gov/cdo-

web/datasets/GHCND/stations/GHCND:USW00014737/d

etail

[19] U.S. Environmental Protection Agency, "Heat Island

Effect". https://www.epa.gov/heatislands.

[20] Angela H. C. Chu and Jin N. Choi, “Rethinking

Procrastination: Positive Effects of ‘Active’

Procrastination Behavior on Attitudes and Performance,”

The Journal of Social Psychology, 2005, 145(3), p. 245-

264.

[21] E. Kim and E. H. Seo, “The Relationship of Flow and

Self-regulated Learning to Active Procrastination,” Social

Behavior and Personality, 2013, 41(7), p. 1099-1114.

[22] USGS, “Dissolved Oxygen and Water,” June 5, 2018,
https://www.usgs.gov/special-topics/water-science-

school/science/dissolved-oxygen-and-water.

[23] “Kaggle: Your Machine Learning and Data Science

Community,” https://www.kaggle.com/.

https://www.kaggle.com/code/residentmario/simple-techniques-for-missing-data-imputation/notebook
https://www.kaggle.com/code/residentmario/simple-techniques-for-missing-data-imputation/notebook
https://www.cs.waikato.ac.nz/ml/weka/index.html
https://berksnature.org/water/maiden-creek-watershed-association/
https://berksnature.org/water/maiden-creek-watershed-association/
https://waterdata.usgs.gov/nwis
https://chuck.stanford.edu/
https://www.hawkmountain.org/about/community/staff/laurie-goodrich
https://www.hawkmountain.org/about/community/staff/laurie-goodrich
https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/re.html
https://pythex.org/
https://docs.scipy.org/doc/scipy/
https://research.library.kutztown.edu/cisfaculty/20/
https://research.library.kutztown.edu/cisfaculty/19/
https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USW00014737/detail
https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USW00014737/detail
https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USW00014737/detail
https://www.epa.gov/heatislands
https://www.usgs.gov/special-topics/water-science-school/science/dissolved-oxygen-and-water
https://www.usgs.gov/special-topics/water-science-school/science/dissolved-oxygen-and-water
https://www.kaggle.com/

	ABSTRACT
	KEY WORDS

