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ABSTRACT 

Preparing and teaching realistic data science courses 

requires labor-intensive preparation and course delivery. It 

is not enough to download data and push buttons on 

machine learning tools. First, there must be a human expert 

available in the problem domain to supply data and 

evaluate work. Without a human expert to provide 

information that is missing or incorrect in archived data, 

the tendency is to take the output of machine learning 

algorithms using potentially faulty data on faith. Second, 

any real-world data requires custom scripts for correcting 

invalid values, creating derived attributes, and formatting 

data for analysis. Then comes the analysis, which is usually 

iterative because of incremental discoveries, often 

requiring additional data, expertise, data preparation, and 

analysis. This case study outlines four domains of data 

analysis that have been very useful in teaching and student-

oriented research: 1) analyzing Java programming student 

performance as a function of work habits; 2) analyzing 

physical and chemical relationships in Pennsylvania stream 

flow data; 3) analyzing audio files for waveform type and 

noise levels; and 4) analyzing raptor migration counts in 

Pennsylvania as a function of climate change. 
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1.  Introduction 
 

This report is a case study on the steps taken to perform 

research, prepare materials and projects, teach, and 

evaluate student work in upper-level undergraduate and 

masters-level graduate data science courses at Kutztown 

University. Research in this context refers to incorporating 

novel data domains and datasets into course materials that 

in some cases leads to publishable results. This approach 

does not use toy or well-established example datasets. The 

approach uses at least partially new data for each course 

offering, giving the instructor and students the opportunity 

to uncover data relationships not previous established. The 

author relates data science to archaeology as excavation 

and analysis of deep patterns in data. If object-oriented 

architecture is plumbing, data science is the iterative 

application of digging and examining. 

 

The following sections explore topics in a chronological 

manner. First, it is essential to identify and enlist human 

domain experts in guiding and reviewing results of 

automated or semi-automated analysis. Applying 

algorithms to data can help create useful analysis, but 

algorithms can also mislead by missing relationships or 

inferring incorrect relationships in data, for example 

inferring causation where there is only correlation. 

Applying algorithms can provide new insights to domain 

experts, but algorithms can also suggest false conclusions 

that human expertise can identify. 

 

Second, it is necessary to locate and obtain data in the 

expert’s domain. The expert or third parties may provide 

data repositories. 

 

Third, it is usually necessary to clean, organize, and store 

the data. Datasets may contain omissions, errors, and 

redundant entries. Detecting errors and imputing values for 

missing fields [1] may be straightforward using basic 

statistical techniques or may require complicated, domain-

specific scripting. 

 

Analysis starts with identification of so-called non-target 

attributes – the control variables of these algorithmic 

experiments – and target attributes – the experimental 

variables. The latter are attribute values we are attempting 

to infer. They are tagged onto the dataset in supervised 

learning or are missing, to be inferred, in unsupervised 

learning. Using tagged datasets is the norm in teaching data 

science because the main constructs of interest are the 

algorithmically extracted mathematical models that relate 

non-target attributes to target attributes. Students and 

course projects need complete, accurate, stable datasets on 

which to build relationship models. Unsupervised learning, 

i.e., predicting the future from past examples and past 

learning, first requires learning in a stable environment. 

 

Analysis is the final stage in this report. Analysis is an 

iterative process. Attribute elimination, augmentation, and 

derivation may be suggested by examining intermediate 

results. Data visualization may suggest next steps in this 

iterative process. 

 

The sections that follow take up each of these stages in turn 

in terms of the author’s teaching experience. Rather than 



presenting a sequence of projects, this report presents a 

sequence of stages, with the same 4 projects per stage. 

 

2.  Enlisting a Domain Expert and Their Data 
 

2.1 Correlating student programming habits to grades 

 

Our first case study relates programming student behavior 

in a sophomore-to-senior Java programming course to 

project letter grades (classification) and project numeric 

grades (regression) [2-4]. These grades served as target 

attributes to be predicted from other attributes. The author 

served as the primary domain expert in this and in two of 

the remaining three case studies, with faculty peers and 

graduate students contributing expertise where needed in 

this one. It was important to build competence in using 

tools, libraries, and in performing analysis before venturing 

outside the author’s domains of expertise. 

 

Most of the data were collected automatically using 

makefiles in the Unix programming environment when 

students performed compile, test, and project submit steps. 

A few survey questions about other courses, projects, and 

exams that competed for time and attention accompanied 

each project. The proposed project went through the 

university’s Institutional Review Board (IRB) approval 

process, and students signed IRB-approved forms granting 

or denying participation. An optional makefile target could 

turn off data collection. All 31 students in the two spring 

2013 sections and 39 students in the two spring 2014 

sections of Java Programming participated. 

 

There were 90 attributes in the data collected in 2013, 

including student time of work per session, number of 

sessions, code lines added / deleted / changed, success or 

failure of compile & test operations, timestamps on files, 

and others detailed in [2]. A set of Python scripts integrated 

project grade data and other data discussed in Section 3. 

 

In spring 2013 the author also taught a graduate course 

intended for study of the internals of database management 

systems, but with permission of the department chair, 

borrowed over half of the semester to explore analysis of 

data from PA stream flow sensors outlined in Section 2.2 

using the Weka toolkit [5,6]. This graduate course offering 

was the genesis of the data science courses at Kutztown 

University. The graduate students served as auxiliary 

domain experts in suggesting Java student behavior data to 

collect. No data outside project edit, compile, test, and 

submit actions, survey answers, project grades, and 

incoming computer science GPAs (grade point averages) 

were collected. Student IDs were obfuscated, and the 

author did not include data such as gender and race that 

might lead to reverse identification of students. 

 

2.2 Correlating PA stream flow properties 

 

The author served as the domain expert for this study, 

based on two years of experience with his high school son 

volunteering as monthly water samplers and data collectors 

for the Maiden Creek Watershed Association several years 

earlier [7]. We acquired additional expertise in stream 

heights, flow rates, and turbidity by kayaking flooded PA 

streams from 2004 through 2007. Expertise in this and 

other environmental studies was augmented by suggestions 

from the author’s nephew, who holds a Ph.D. in 

environmental engineering and is a lead engineer for a 

contract company working with the Federal Emergency 

Management Agency (FEMA) and other agencies on flood 

plain and related data analysis. 

 

Course data came from on-line databases supplied by the 

US Geological Survey (USGS) [8]. The author limited the 

scope of the project to PA streams and rivers. The 

following are the primary attributes used from 46 

automated sampling sites with over 490,000 stream sample 

records. Sites were selected based mostly on available 

measured attributes. 

 

• timestamp   measured 

• pH    measured 

• TempCelsius   measured 

• Conductance   measured 

• GageHt   measured 

• DischargeRate  measured 

• TimeOfYear   derived attribute 

• Month   derived attribute 

• MinuteOfDay  derived attribute 

• MinuteOfYear  derived attribute 

• OxygenMgPerLiter  measured 

 

USGS stream data are available as text reports requiring 

scripted conversion to comma separated value (CSV) files. 

After some preliminary analysis, OxygenMgPerLiter 

served as the tagged, target attribute to be predicted from 

other attributes. We continue to extend and use PA stream 

data in more advanced analysis. 

 

2.3 Correlating audio signal properties 

 

The author again served as the domain expert, having 

worked in industry for over a decade as a software architect 

and developer for tools used to debug embedded audio 

signal processing applications in telephony [9]. 

 

The data used from spring 2020 through fall 2023 for two 

projects per semester were generated using statistical 

sampling techniques for standard audio reference 

properties via the ChucK audio programming dataflow 

language [10]. The tagged target classification attribute is 

waveform type from the standard reference set {sine, 

triangle, square, sawtooth, pulse}, and the tagged numeric 

regression attribute is white noise level, where white noise 

is uniformly distributed random signal levels across the 

audible frequency spectrum. We have used 10,005 

instances so far; 5 are noiseless training instances for the 

standard {sine, triangle, square, sawtooth, pulse} set. One 



derived dataset has as non-target attributes the first 32 

strongest signal frequencies and amplitudes for 

classification of waveform class, and another for white 

noise regression has statistical distributions of mean, 

median, min, and max for signal levels across the full 

audible spectrum. The raw data are .wav audio files. 

Feature extraction is discussed in the next section. Figure 1 

shows a single cycle of reference audio waveform types 

generated in the author’s fall 2023 undergraduate Python 

scripting course. The author has tentative plans to replace 

ChucK signal generation with Python libraries. The signal 

range of [-32768, 32767] in Figure 1 corresponds to the 

standard 16-bit representation in .wav files. 

 

 
Figure 1: Visualizing reference audio waveforms 

 

2.4 Correlating climate properties to raptor counts 

 

The domain expert for this fourth case study is Dr. Laurie 

Goodrich, lead researcher at the Hawk Mountain Sanctuary 

(HM) in eastern Pennsylvania [11]. The author has been a 

member of the sanctuary for many years. One of the 

premiere activities of the sanctuary has been the annual 

autumn counting of 23 raptor species during fall migration. 

There are 88 years of data from 1934 through 2021, with 

integration of data from 2022 and 2023 in the author’s 

work queue. 

 

HM volunteers began recording climate data such as 

temperature, wind speed, wind direction, visibility, and 

cloud cover consistently starting in 1976. 1976 through 

2021 gives us 46 years X approximately 100 days during 

the migration season X 12 median observations per day, 

yielding 55,200 discrete observation records (exact current 

count is 55,826), usually of a 60-minute duration. 

Volunteers perform the observations and Dr. Goodrich 

deploys the data in Excel spreadsheet format that the author 

converts to CSV for Python data cleaning. 

 

The primary target attributes are the individual species’ 

raptor counts and their long-term trends. This project is 

especially oriented towards time-series trend analysis of 

correlations between climate changes and raptor counts. 

The author and students began working with Dr. Goodrich 

in fall 2019, and incremental data deployment and analysis 

is ongoing. The author received a grant from the Kutztown 

University Research Committee for a summer 2022 stipend 

and funding for several student workers. The author has 

used these data extensively in data science courses. 

 

Figure 2 shows Hawk Mountain’s primary observation and 

data collection point at North Lookout. The ridge leading 

away is the Kittatinny Mountain, going northeast into 

northern New Jersey. Behind the camera the ridge falls to 

the valley, with the remainder of the Kittatinny Mountain 

continuing about a mile to the south on a southwest ridge 

to central PA, disconnected from North Lookout by the 

interposed valley of the Eckville Fault. Updrafts on the 

northern side of the ridge, to the left in the photo, provide 

lift and energy for locomotion for migrating raptors. 

 

 
 

Figure 2: North Lookout at Hawk Mountain Sanctuary 

 

The author prefers having students get physical contact 

with their data sources when possible. Figure 2 shows 

students at North Lookout after Dr. Goodrich gave us an 

expert presentation in September 2019. Unfortunately, 

COVID protocols made an in-person visit impossible in 

2020-2021. The Kutztown Women in STEM student club 

and the author have a similar visit planned for April 27, 

2024. One graduate student has completed a master’s thesis 

and another is performing supervised research in this 

domain. 

 

2.5 Summary: data domain expertise 

 

An instructor had best start with problem domains for 

which they have some level of expertise. They are learning 

algorithms, tools, techniques, and pedagogical approaches, 

activities that constitute a serious workload, without 

acquiring new domain knowledge or engaging external 

experts at the same time. Only after several course 

offerings is it time to find a domain with an external expert.  

 

Figure 3 illustrates one concrete example of why working 

with an expert in analyzing a domain that is new to the 

faculty member is essential. The lines in Figure 3 illustrate 

total annual counts for dominant wind directions in the 

range N, NNE, NE … WNW, NW, NNW, and UNK, with 

the latter representing no dominant wind direction during 



observation periods. Notice the green NW line that 

plummets going from 1994 to 1995. The author took that 

plummet at face value during initial analysis, looking to 

correlate it with declining raptor counts. Subsequent 

discussion with Dr. Goodrich revealed that, “1995 is the 

year that observers started using three-letter wind direction 

designations such as WNW.”  In fact, close examination of 

the red WNW line buried in Figure 3 revealed that this 

count rose at the same time that NW plummeted. 

Subsequent analysis was necessary to find how to integrate 

new WNW and NNW counts back into NW to establish 

data consistency. The result is that WNW alone integrates 

back into NW in order to synchronize with preceding years. 

This fact is significant because WNW and NW winds 

create updrafts that raptors use to coast along the northern 

side of the Kittatinny Ridge. 

 

 
 

Figure 3: Apparent precipitous drop in NW wind in 1995 

 

3.  Cleaning, Organizing, Correcting Data 
 

3.1 Java programming student data preparation 

 

The author wrote 3525 non-blank lines of Python code in 

13 scripts and libraries to integrate data from automated 

makefile collection of student build / test / submit actions, 

surveys, grade information, and other course roster data 

into a CSV file for analysis of the spring 2013 dataset. 

These numbers jumped to 4247 non-blank Python lines in 

14 scripts and libraries because of an extension to perform 

new within-students analysis discussed in Section 4.1. 

 

A potential problem presented by any data preparation 

stage with a lot of custom scripts is that of injecting errors 

into the dataset thanks to buggy code. For this project the 

author used grant funds to employ a student who had 

earned a grade of A in the 2013 course [2,3]. She had 

access only to her own raw data generated by the makefiles, 

the surveys, and the auxiliary data inputs. She used Excel 

on her own data to duplicate data preparation steps outlined 

by the author. When we compared her CSV file created 

within Excel to the author’s created by Python scripts, there 

were some substantial differences. It turned out that the 

student was using the output of her first edit / build / test 

session as the starting data point in the project sequence, 

while the author was using the unchanged state of the 

handout code. When she updated her Excel calculations to 

use the handout code as the starting point, our CSV files 

lined up exactly to within trivial rounding differences. In 

current projects we compare numeric results using the 

Python math library’s isclose() function that implements 

almost-equals testing within default or explicit tolerances 

[12]. Ignoring minor rounding differences is essential in 

derived data verification. 

 

Having independent means for verifying data cleaned, 

aggregated, and structured by scripts that may contain bugs 

is essential for establishing veracity of integrated data and 

its analysis.    

 

3.2 PA stream flow data acquisition and preparation 

 

In 2017 the author wrote 504 non-blank lines of Python 

code in 2 scripts to parse textual data downloaded manually 

from the USGS web site [8] to create CSV files with the 

attributes enumerated in Section 2.2. This Python code 

relies on Python’s regular expression library re in coding a 

parser for the text data [13]. Manual comparison of samples 

of the 8-attribute automated observations of Section 2.2 to 

CSV records was adequate for verification, augmented 

with a calculator to check the four derived attributes. 

 

Some student assignments include familiarization with the 

re library in parsing and structuring textual data. In 2017 a 

graduate student introduced the class to the interactive 

pythex utility for testing regular expressions [14]. 

 

If analyzing water data were our primary project, it would 

be possible to write a web scraper to download data only 

for select sites containing the desired measurement 

attributes and other attributes such as location. Manual use 

of the USGS site requires specifying certain data 

constraints such as required attributes and location. While 

the instructor continues to use one USGS water project in 

some courses, the number of data collection sites needed 

does not justify spending time writing a web scraper. 

 

3.3 Generating and extracting audio signal properties 

 

A Python script generates a set of executable ChucK scripts 

[10] – ChucK is an application specific dataflow language 

for generating sound and music – one per .wav file, with 

signal gains uniformly distributed between 0.5 and 0.75, 

and white noise gains between 0.1 and 0.25, where 0.0 is 

no signal and 1.0 is the normalized maximum signal 

strength. The generator creates equal numbers of {sine, 

triangle, square, sawtooth, pulse} waveforms, one per 

generated ChucK script. A shell script then executes these 

ChucK scripts, one at a time, to create .wav files of one 

second duration. 

 

Listing 1 shows the ChucK dataflow code for generating a 

triangle waveform with a fundamental frequency of 999 

Hertz (cycles per second), a signal gain of approximately 

0.675, and a white noise gain of 0.201into a .wav file of 1 

second duration. The unique serial number of this .wav file 



is 183046. Tagged parameter values are embedded in the 

.wav file names. In Listing 1 the “dac” is the digital-to-

analog converter that drives a loudspeaker. The dataflow 

sends the dac’s output to the WvOut object __w__ that 

stores the .wav file. These projects have generated 10,005 

such .wav files, 2001 per waveform class. Figure 4 gives a 

schematic dataflow view of the code in Listing 1. Arrowed 

lines show generated signal flow direction. 

 

 

 

 

 

 

 

 

 

 

 

 
Listing 1: A ChucK dataflow script that generates a .wav file 

 

 
Figure 4: The signal dataflow of Listing 1 ChucK code 

 

These audio projects used a cryptic Chuck signal analysis 

script for reading a .wav file and extracting frequency and 

signal strength measurements from it as non-target 

attributes for machine learning tools outlined in Section 

4.3. This script saves these non-target attribute values in a 

text file whose name contains the tagged, target attribute 

values including waveform class, signal fundamental 

frequency, signal gain level, and white noise level. 

 

The point here is not to learn this audio problem domain or 

to decode ChucK dataflow scripts for signal generation and 

analysis. The point is that domain expertise and one or 

more domain experts are required to guide student projects 

in data analysis. This is not just a matter of pushing 

machine learning tool buttons. 

 

In a fall 2023 course the author had some success, both in 

terms of simplifying coding by sticking to Python, and in 

terms of flexibility of analysis, by using the SciPy libraries 

[15] for reading .wav files and extracting non-target 

attribute values from them. Tagged target attributes are 

extracted from the .wav file names as discussed. Moving 

signal generation and extraction to Python opens up these 

stages for student coding in a language they know. 

 

3.4 Climate and raptor data cleaning and structuring 

 

Hawk Mountain climate and raptor observation data are 

collected by volunteers on an isolated lookout that is often 

cold and windy. Even though Hawk Mountain deploys 

their records as Excel files, the presence of several classes 

of errors required the most substantial Python data cleaning 

of these four case studies [16,17]. 

 

The first problem encountered is that the data from 1934 

through 1975 are missing most climate attributes such as 

air temperature, wind speed, and wind direction. A 

master’s thesis student and the author integrated weather 

data from the Allentown, PA Airport downloaded from a 

National Oceanic and Atmospheric Administration 

(NOAA) website [18] into our dataset. Analysis uncovered 

the fact that the Lehigh Valley in which the airport resides 

suffers from the Heat Island Effect [19], creating climate 

conditions that do not correlate well with the weather on 

North Lookout, which is more subject to winds from the 

northwest and which cools thoroughly at night. The author 

has discarded this airport data in ongoing research, and has 

limited trend analysis to 1976 through the present, when 

weather conditions are in the deployed data. 

 

The next problem is that some missing HM data, especially 

temperature records that should have been recorded as 

missing, were recorded in a substantial number of cases as 

a series of 0 Celsius numbers. It was necessary to write 

Python code that attempts to distinguish legitimate 0 

records from missing data. The Python script inspects 

adjacent observation periods for fluctuation of 

temperatures that may make 0 crossings but that also have 

some non-0 values for nearby observations on the same 

day. Python converts a string of all zeroes for a day into 

missing, unknown value entries. In a related data problem, 

early years did not record cloud cover percentages, but they 

were sometimes entered as zeroes. These also needed to be 

marked as unknown. 

 

A related problem was invalid temperature records that 

would have boiled or evaporated volunteer observers. For 

example, what appears to have been intended as a record 

of 24 degrees C (75.2F) was entered as 2424 C (4395.2 F). 

The volunteer simply wrote “24” twice. The Python script 

checked for temperature values outside of 2.5 standard 

deviations for the day, marking them as unknown. 

 

Some raptor counts for an “all” category, for example the 

sum of immature and adult individuals of  a species, did not 

TriOsc generator => Gain mixer => dac ; 

Noise noisey => Gain noisegain => mixer ; 

999 => generator.freq ; 

0.675189571038 => generator.gain ; 

0.201025367482 => noisegain.gain ; 

dac => Gain __g__ => WvOut __w__ => blackhole; 

"lazy1_TriOsc_999_0.675189571038_0.2010253674

82_183046.wav" => __w__.wavFilename ; 

1::second => now ; 

null @=> __w__; 



match the actual sum of the sub-category counts. Our 

analyses use only the “all” counts. When they do not match 

the sum of the sub-counts, we use the larger of the recorded 

“all” entries and the sum of the sub-categories. The sub-

categories vary by species. 

 

Hawk Mountain began using 3-letter wind direction entries 

such as WNW for west-northwest in 1995. Volunteers 

occasionally rearranged these letters, for example 

recording NWW for WNW. Python cleaning was a matter 

of permuting the letters and picking the correct, canonical 

arrangement. As previously noted, prior to 1995 a wind 

direction of WNW was just recorded as NW. It became 

necessary to combine NW and WNW counts into an 

aggregate value from 1995 onward, to align later 

recordings with the lower resolution recordings before 

1995. Note that WNW could have been just as readily 

recorded as W, since WNW lies between W and NW on 

the compass. Determining that WNW and NW should be 

combined starting in 1995, instead of WNW and W, 

required linear trend analysis in these and other 3-letter 

wind directions introduced in 1995. 

 

3.5 Summary: cleaning, organizing, & correcting data 

 

A general observation is in order. The more people 

involved in data generation, e.g., Java programming 

students in Section 3.1 or Hawk Mountain volunteers in the 

current Section 3.4, the more necessity for inspecting and 

cleaning data. The stream sensors of Section 3.2 are 

generally reliable, although they may fail, data 

transmission packets may fail to deliver, and extremely 

cold weather may affect sensor accuracy, but the sensors 

and automated data collection tend to be reliable. 

Stochastically generated audio of Section 3.3 in these 

studies is the most reliable. Collection of real-world audio 

recordings and data streams may suffer from some 

transmission, storage, and lossy signal problems, but even 

they should be pretty reliable. 

 

Manual entry of large datasets, and datasets that span large 

intervals in time during which data collection procedures 

change, are the ones most likely to need preliminary human 

analysis to determine the need for cleaning at an early stage 

just after collection. Hawk Mountain manual data 

collection, and addition of attributes such as temperature, 

later cloud cover, and change from observing treetops to 

using ground-level wind gages to measure wind speed, are 

examples of potential sources of data errors and changes in 

processes that need to be massaged. 

 

Human coding of more complex data integration or 

cleaning scripts such as those for Java programming 

students in Section 3.1 require validation that does not use 

the scripts to validate themselves. Both data entry and data 

manipulation via scripts require careful inspection for 

patterns of errors such as those discussed in Section 3. 

 

 

4.  Iterative Analysis 
 

This section outlines approaches and results of analysis of 

the four case studies in very general, summary terms. The 

reader is directed to published papers enumerated in the 

Reference section for process details and results of these 

data analyses. 

 

4.1 Analyzing Java programming student activities 

 

The analysis of the 31 Java programming students in the 

two spring 2013 sections took the form of regression 

modeling in Weka [6] of non-target attributes such as 

starting time on projects, length of work sessions, time of 

day of work sessions, and magnitude of code changes per 

session, to numeric project grades [2]. Linear models 

unearthed the most important behavioral attributes, two of 

which appear here. 

 

 
 

Figure 5: Project grade as a function of starting time 

 

Figure 5 shows mean project grade as a function of mean 

student starting time before the due date (Jstr) on a span of 

456 hours (2.7 weeks) to 24 hours in bands according to 
incoming computer science grade point average (Cgpa). In 

roughly the last 12 days of a project schedule, project 

grades slope downward; starting a project within 24 hours 

of its due date costs 20 points, 2 full letter grades, compared 

to starting it at least 12 days before its due date. 

 

Figure 6 shows mean project grade as a function of mean 

work session length in minutes. A work session consists of 

consecutive makefile build and / or test actions with no 

gaps greater than 15 minutes between such actions. Grades 

for all Cgpa bins less than or equal to 3.0 drop off for 

average work sessions that are less than 60 minutes. 

 

After adding 39 students in the two spring 2014 sections of 

Java Programming to the 31 students of the previous year, 

we performed additional analytical steps [3]. Data analysis 

is usually an iterative process in which one cycle of 

investigation uncovers the need for additional derived data 

attributes and subsequent analysis. An added analysis 

considers project data only for students with a project grade 

Gprj spread of at least 20% between their best and worst 

project grades. Different students occupy different overall 



grading bands, but each shares the fact that the difference 

between their best and worst Gprj is at least 20%. 

 

 
 
Figure 6: Project grade as a function of work session length 

 

 
 
Figure 7: Within-student grade as a function of starting time 

 

Figure 7 shows the mean within-student performance on 

project grade as a function of starting time before the 

deadline. Project grades scaled as the mean fraction of each 

student’s best grade plummeted by 10% to 15% by 

procrastinating from the 2-week handout of an assignment 

to 24 or even 12 hours before it was due. We also analyzed 

skipping some days after an early start and found that on 

average only half of such days required actual work to be 

done. Presumably, an early start gives a student a sample 

of how difficult the project will be, and therefore how much 

leeway there is in working every day. 

 

The uptick for Cgpa >= 3.0 at 24 hours led us to investigate 

the concept of active procrastination. [20,21]. Active 

procrastinators tend to have many projects engaged in the 

early part of an assignment period. They have adopted an 

optimization strategy of deferring work until it is 

necessary. Some active procrastinators also increase their 

flow – their focus – by waiting until work is necessary. 

Note that the uptick in Figure 7 at 24 hours occurs only for 

students with high Cgpa, and only for a very small fraction 

of those high-Cgpa students. Passive procrastinators, in 

contrast, defer work out of avoidance or poor time 

management skills. They do not do well. Figure 8 shows 

that within-student performance also drops off when mean 

work sessions are less than an hour long.  

 

The author has used these analyses in scheduling classes. 

All classes take place in computer lab classrooms, all 

classes are at least 75 minutes long, and the author gives 

students at least a 60-minute work session at the start of 

each project cycle, after they have had a weekend to read 

the assignment materials. Thus, both the Jstr lead time and 

the Mavg work time constraints for grades are met. 

 

 
 
Figure 8: Within-student grade as a function of work session 

 

4.2 Analyzing USGS stream flow data relationships 

 

Analysis of the USGS PA stream flow data [8] was the first 

of the author’s data science projects used by students. Two 

essential points are that 1) the USGS PA stream flow data 

analysis was not a novel research project and, 2) verifying 

results relied on research papers that had already been 

published. Having a stable target analysis in the form of 

established scientific facts was essential for giving our first 

data science students reliable projects. 

 

The author and students used Weka regression models to 

establish the relationships of the non-target attributes 

enumerated in Section 2.2 to OxygenMgPerLiter 

(dissolved oxygen in milligrams per liter). Figures 9 and 10 

use Weka scatterplots to graph the main points. Each data 

record in one year’s recording of 46 automated sampling 

sites, with over 490,000 records in all, appears as a point in 

these scatterplots. Figure 9 shows the level of dissolved 

oxygen lowest during the summer, caused by the inverse 

relationship of water temperature and the ability of water 

to hold dissolved oxygen [22], accounting for the overall U 

shape of Figure 9, with the low point in midsummer. 

 

In the third course in which we used PA stream flow data 

the author had the students “crowd source” the selection of 

water sampling sites to use as training data. There are a lot 

of potential training sites and a good number of students. 

Ideally, training data should be distinct from testing data, 

so as not to “load the dice,” so to speak. Training data 

should be a representative cross section of overall data. It 

should not bias trained machine models towards special 

cases, a condition called “over-fitting”. Students were 

searching the space of potential training data sites in 



parallel. The most inappropriate sites were those missing 

several months of data for the year. 

 

 
 

Figure 9: Dissolved O2 as a function of day of year 

 

One of the students came to office hours with graphed data 

from one of their assigned sampling sites on the Schuylkill 

River in Philadelphia. Their data showed an upward spike 

in dissolved oxygen during a few days in the first week of 

July, followed by a rapid decline back to typical numbers. 

We could find nothing special in searching for the date. 

Later that week the author inspected data from two sites 

upstream from that site, one near Norristown and another 

further upstream near Royersford. What the author found 

was that the upstream sites’ O2 levels spiked a few days 

earlier, and that upstream spikes were a little lower. The 

author did a literature search and found that an exponential 

growth in stream plant life in late June or early July, 

followed by a fallback in plant density, was an established 

scientific fact. Photosynthesis from the exponential plant 

growth accounts for the spikes. Different spikes at different 

times from different sites appear in the highlighted region 

of Figure 9. 

 

Figure 10 shows these same records, this time graphing 

dissolved oxygen as a function of the minute of the day. 

Since there are the same minutes of the day in all 4 seasons, 

most of Figure 10 just averages out any pattern. However, 

note the highlighted outlier instances near the top right of 

Figure 10, from late morning through the evening. That 

region shows the existence of increases in O2 levels in a 

diurnal pattern from late morning through evening, thanks 

to sunlight-induced photosynthesis. Plotting or modeling 

only the months of the growing season show daily rises and 

falls in O2 levels thanks to diurnal photosynthesis. 

 

Using data that reveals established scientific facts, and 

using student crowd sourcing to investigate potential 

training data sources, are two pedagogical findings from 

this PA stream flow case study. 

 

 
 

Figure 10: Dissolved O2 as a function of minute of day 

 

4.3 Analyzing .wav files for classification & regression 

 

Unlike the Java programming student data, the stream flow 

data, and the climate-to-raptor count data, the author had 

complete control over the creation of the .wav file audio 

dataset and its anticipated analysis. 

 

 
 

Figure 11: Frequency domain histogram of a square wave 

 

Figure 11 shows a frequency-domain plot of a 1000 Hz. 

(cycles per second) square wave with a signal gain of 0.74 

on a scale of 0.0 to 1.0, and a white noise gain of 0.16. This 

plot is essentially a histogram of signal strengths at 

frequencies across the audible range of 0 to 22,050 Hz., 

with the upper harmonics elided to reduce figure size. The 

fundamental frequency of 1000  Hz. is labeled 1st at the top. 

A square wave consists of only odd harmonics – 3000 Hz., 

5000 Hz., etc. for a 1000 Hz. fundamental frequency – with 

those odd harmonics decaying in level at an established 

rate. Triangle waves also populate only odd harmonics, but 

at a different decay rate than square waves. Sawtooth 



waves and pulse waves populate even and odd harmonics 

but at differing decay rates. Sine waves populate only the 

fundamental (1st) frequency. The harmonics and their 

decay rates act as signatures for waveform type 

classification. 

 

After several course offerings using these waveforms, the 

author determined a data representation approach that 

yields the most accurate classification of waveform types. 

Normalize the strongest, fundamental frequency to 1.0 and 

its amplitude in the histogram of Figure 11 to 1.0. These 

are attributes freq1 and ampl1. The second strongest 

frequency in the data is freq2 as a multiple of freq1, and its 

amplitude ampl2 is a fraction of ampl1. Continue through 

the 32 strongest amplitude peaks, normalizing the 

frequencies as multiples of freq1 and their amplitudes as 

fractions of ampl1. This data representation approach 

provides perfect results for classification of waveform 

type. Below is the Weka OneR rule that considers only a 

single non-target attribute and yields a perfect 

classification for 10,005 .wav files. The decayed amplitude 

of the first multiple of the fundamental frequency, relative 

to the fundamental amplitude, is enough of a “finger print” 

to distinguish the waveform type. 

 

ampl2: 

 < 0.056232 -> SinOsc, < 0.223464 -> TriOsc 

 < 0.415814 -> SqrOsc, < 0.7182685 -> SawOsc 

 >= 0.7182685 -> PulseOsc 

 

The point for this case study is that the most effective data 

representation format for analysis may not be the most 

obvious or the simplest mapping of the raw data. It took 

several iterations of analysis of this dataset to arrive at its 

most effective structure for classification of wave type. 

 

An even later discovery of the best data representation 

format for the white noise level occurred in a course in fall 

2023. The white noise gain of 0.16 accounts for the non-

harmonic squiggles in Figure 11. While white noise is in 

principle uniformly distributed across the frequency 

spectrum of Figure 11, true uniform distribution is 

approached only as the number of sample values in the 

histogram approach infinity. There are 22,050 points in 

Figure 11’s histogram, so non-uniformity in levels induced 

by white noise appears. 

 

In fall 2023 we took the statistical min, max, mean, and 

median of all values in each .wav file frequency domain 

histogram, and correlated those statistical measures to the 

white noise gain. What we found is that the median signal 

level correlates very closely with white noise gain. Min and 

max by their nature are extremely non-uniform, leaving 

mean and median. Max in particular is affected by the non-

noise signal gain. Moreover, extremes of either min or max 

can weigh on the mean more than on the median. In the full 

dataset of over 490,000 audio samples, median has a 

correlation coefficient of 0.964257 with the tagged, target 

white noise gain level, where a correlation coefficient of 

1.0 is perfect correlation and of 0.0 is no correlation. The 

mean of values in each histogram, in contrast, has a 

correlation coefficient of only 0.063363. Mean is pulled 

away from the white noise level by the signal peaks. 

 

Again, the point for this case study is that the most effective 

data representation format for analysis may not be the most 

obvious or the simplest mapping of the raw data. It took 

even more iterations of analysis of this dataset to arrive at 

its most effective structure for regression of white noise 

gain than it did for classification of wave type. 

 

4.4 Analyzing climate change to raptor correlations 

 

The page limit and prospective length of this discussion 

prohibit doing it here. The reader is directed to an extensive 

write-up from the summer of 2022 and the summer of 2023 

[16,17]. Dr. Laurie Goodrich’s expertise, the Hawk 

Mountain datasets, and the time to investigate them have 

been invaluable in upper-level and graduate data science 

courses and in one master’s thesis. 

 

The current state of this research is summarized at the 

bottom of reference [17]: “For the prime observation 

months of October and November … wind speed measures 

that correlate strongly with declining raptor species counts 

are consistently declining during observation periods. 

There are three potential hypotheses about the declining 

raptor counts. A) Diminishing updrafts on the north-

northwest side of the Kittatinny Ridge are leading the 

raptors to cross the mountain at more widespread locations 

instead of funneling them past North Lookout and across 

the Eckville Fault. B) Raptors are wintering further north, 

perhaps due to increasing temperatures. C) Raptor 

populations are declining in numbers. The next step in this 

investigation is to look for trends in the raptor counts 

during the spring, northerly migration. If there has been no 

significant change in the last quarter century, that would 

indicate alternative (A).” The author and a graduate student 

will continue to explore this data in summer 2024. 

 

5.  Conclusions 
 

Having access to domain experts and their data, learning to 

identify data deficiencies and to code scripts to clean, 

augment, and structure them, and acquiring the knowledge 

and skills to apply machine learning models for data 

relationships are all essential, non-trivial aspects of 

preparing and teaching a substantial data science 

curriculum. Sections 2.5 and 3.5 provide conclusions for 

data domain expertise, data acquisition, and data 

preparation. Like data analysis, teaching data science is an 

iterative, deepening process. 

 

While the data domains and projects surveyed in this report 

are custom and unique to the author’s courses, students are 

welcome to use off-the-shelf data sources such as Kaggle 

in doing individual projects in several courses [23]. 
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