
TRAINING ARTIFICAL INTELLIGENCE AGENTS TO PLAY A TOWER DEFENSE GAME 

USING REINFORCEMENT LEARNING  
 

 

Mitchell Harrison, Jonathan Rivera, Justin Stevens, Dr. Chad Hogg 

Millersville University 

{mdharri2, jjriver1, jmsteve1, chad.hogg}@millersville.edu 

 

ABSTRACT 
Tower Defense games have captured a wide audience, 

drawing them in with their strategic complexity and 

challenging gameplay. Players must strategically place 

defensive towers and make quick decisions to fend off 

waves of enemies. Harnessing the potential of 

Reinforcement Learning (RL) algorithms offers a 

promising avenue for discovering optimal strategies 

through iterative learning. This paper explains the 

implementation of a tower defense game in Unity and our 

experiences in training a reinforcement learning model to 

play optimally. 

 

 

1. Introduction 

 
 

Bloons Tower Defense (BTD), a game series in the tower 

defense genre, is known for its blend of strategy and fast-

paced action. Our project aims to recreate this game 

within a Unity environment and design an artificial 

intelligence (AI) to play the game. Recreating the game 

instead of interfacing directly with BTD allows us to 

design a more complex environment for the AI. This AI 

will utilize a reinforcement learning (RL) algorithm 

known as Proximal Policy Optimization (PPO) that will 

be expanded upon later.  

 

While other AI algorithms could be used, we utilized PPO 

as it is a newer RL algorithm that fixes many common 

issues faced with traditional RL algorithms [1]. These 

issues most notably include sparse reward environments, 

which is a case for our game necessitating the use of PPO 

or related algorithms that could address this issue. 

 

Our goal for this AI is to have it play the game that we 

recreate in the same manner as a human and eventually be 

able to play at or above the level of a human. However, as 

we will see later, designing an AI to play a game this 

complex is far from a trivial task and requires a 

significant amount of parameter tweaking and 

experimenting. 
 

2.  Building A Test Environment 

 

Tower defense is a popular genre in the world of video 

games, requiring players to strategically place defensive 

structures, known as towers, to prevent waves of enemies 

from advancing toward a designated point on the map. 

One notable example within this genre is a game series 

named Bloons Tower Defense (BTD), where players face 

off against colorful balloon enemies known as "bloons" 

and must use various monkey towers equipped with 

different weapons and abilities to pop them before they 

reach the end of the path. This classic game series serves 

as the basis for our project. 

 

2.1 Background: Bloons Tower Defense 
 

 
Figure 1: Progression of bloon types. 

 

In Bloons Tower Defense (BTD), bloons are categorized 

by color, each representing varying levels of health and 

speed. Health refers to how many hits it takes to "pop" or 

destroy a bloon, while speed refers to how quickly a bloon 

moves along the path. The progression of bloon colors, as 

illustrated in Figure 1, represents an increase in both 

health and speed. It begins with red, the weakest and 

slowest bloon, and progresses to blue, green, yellow, pink, 

white, and finally, black, the strongest and fastest type. 

 

When a higher-level bloon is popped, it is replaced by the 

next lowest-level.  For example, a popped green reveals a 

blue that when popped reveals a red that when popped is 

removed from the game.  Thus, high level bloons require 

multiple sequential attacks to completely destroy. 

 

The game progresses through waves, or "rounds," with 

each wave introducing increasingly challenging bloon 

formations. As players advance through the waves, they 

must deal with a higher number of bloons, as well as 

bloons with greater health and speed. 

 

Players can earn in-game currency by popping bloons and 

completing rounds, with the amount earned directly linked 

to the number of bloons popped and the current round 

number. This currency serves as the primary resource for 

purchasing towers and upgrades. In addition to managing 

currency, players must also monitor their "lives'' 



throughout the game. Lives represent the player's health 

and are depleted each time a bloon successfully reaches 

the designated point on the map, with the game ending 

once all lives are gone.  Higher-level bloons cost more 

lives when they are “leaked”. 

 

To defend against bloons, players must use defensive 

towers called monkeys. The monkey towers possess a 

variety of different abilities and upgrades each costing a 

different amount of money. Players must strategically 

choose which towers to place, where to place them, and 

how to upgrade them to effectively pop bloons and 

progress through the game. In the BTD game series, 

players can choose from over 24 distinct types of 

monkeys. However, for our project, we focused on 

implementing the dart monkey, boomerang monkey, 

cannon tower, tack tower, ninja monkey, super monkey, 

dartling gunner, and sniper monkey. 

 

2.2 Background: Unity Game Engine 
 

While brainstorming for the project, we came to a 

dilemma on which environment to use to train the AI. We 

could either train the AI in any of the six commercially 

released Bloons Tower Defense games, but this would 

require an interface for the AI to interact with the game 

and way to retrieve important game data and supply it to 

the AI. Or we could recreate the game from scratch and 

have the interface built into the game for the AI to interact 

with directly. We deemed the latter to be an easier and 

more suitable approach since we could then tweak the 

game to suit our needs better and could make a more 

interesting environment for the AI. For this endeavor of 

recreating the game, we decided on the Unity Engine due 

to the team's prior experience with the engine.  

 

The Unity Engine is a popular 2D and 3D game engine 

that supports modern game development features to aid in 

development [2]. It has an easier entry barrier than other 

popular engines such as Unreal Engine, due to its use of 

C# as the main scripting engine compared to C++, at the 

cost of performance which is mostly negligible in a 2D 

environment that the Bloons game requires [2].  

 

 
Figure 2: A randomly generated 10 by 16 map in our 

game. 

 

2.3 Map Generation 
 

Unlike the actual BTD games that offer a variety of pre-

built maps to choose from, ranging from easy to hard 

difficulty, we opted to have our map randomly generated 

for each game. Figure 2 shows an example of a randomly-

generated map. Between each playthrough the path of the 

bloons and the tower placement areas are different, 

making the process of training an AI to play the game in 

general much more interesting. However, the rules that 

remain constant when randomly generating a map are that 

the path must always go from the left side to the right side 

without ever entering the top or bottom row and any two 

non-consecutive path tiles cannot be touching. Both 

decisions were made to avoid confusion from human 

players.  

 

The map is displayed as a series of tiles that form a grid. A 

grass tile was used to represent a spot where a player 

could place a tower, and a sand tile was used to denote the 

path of the bloons where the player could not place 

towers. The path of the bloons is a series of connected 

tiles that the bloons must follow, shown in Figure 2. Once 

the map was generated on screen, we used a 2D array to 

track the state of the map, allowing us to provide 

important environment details to the AI later. 

 

2.4 Wave Manager 
 

The Wave Manager script is a crucial part of managing the 

waves of enemies in the game. It helps determine when 

waves start, how enemies are spawned, and when waves 

end. This script allows for customizable settings like the 

cooldown time between waves to give the player time to 

alter their defensive measures and whether the waves are 

randomly generated or not. One key feature of the Wave 

Manager is its ability to semi-randomly generate waves 

based on predefined difficulty levels called RBEs (Red 

Bloon Equivalents). These RBEs represent the difficulty 

of a wave in a numerical form. For example, the red bloon 

has an RBE of 1 since it has one HP, the blue bloon has 2 

HP, so it has an RBE of 2 and so forth. So, for any given 

wave the RBE for that wave is predetermined and a 

random selection of bloons is chosen such that the sum of 

the RBEs of the chosen bloons will be equal to the wave 

RBE.  

 

The script selects which types of enemies to spawn in each 

wave from a list of possible enemies. This list of possible 

enemies is updated as the player progresses through the 

waves with a hardcoded table, as we did not want one of 

the hardest bloons to spawn in on an early wave, 

mimicking the behavior of the actual BTD games. For 

example, on wave 1 it is only possible for the red bloon to 

spawn. Then we add the blue bloon on wave 2, the green 

bloon on wave 6, etc. Another important aspect is how it 

handles the progression of waves. It starts waves either 

manually, with player input, or automatically after a 



predefined number of seconds, whichever comes first. It 

keeps track of the current wave number and checks if a 

wave is completed by monitoring the number of enemies 

on the map and the number left to spawn.  

 

The difference between our Wave Manager system and 

the BTD games is the approach to wave generation. In our 

system, waves are semi-randomly generated based on 

predefined difficulty levels (RBEs), allowing for variation 

in enemy types and quantities. Conversely, BTD games 

employ waves made for each level until going past the 

level limit, with specific enemy types and spawn patterns 

designed for a progressively challenging experience.  
 
After this level limit then it becomes more like ours with 

semi random bloons spawning with an infinite level cap. 

Another distinction is in wave progression control since 

we allow flexibility in starting waves manually or 

automatically, with customizable time intervals between 

waves. In contrast, BTD games tightly control wave 

progression within the level design, with predetermined 

intervals and scripted events aligning with the game's 

difficulty curve. 

 

Additionally, the Wave Manager organizes enemies into 

groups based on the bloon type/color, each with its own 

spawn interval and number of enemies to spawn. This 

allows for more control over how enemies are distributed 

throughout each wave. However, the Non-Random Wave 

Manager script offers a different approach to managing 

waves. Instead of semi-random generation, it relies on 

predefined wave events. Each wave event contains 

specific information about the types and quantities of 

enemies to spawn, as well as the timing of their spawn. 

These wave events provide a more scripted and controlled 

experience compared to semi-random generation. They 

allow developers to design waves with precise timing and 

enemy compositions, leading to more tailored gameplay 

experiences. 

 

 
Figure 3: In game screenshot of a randomly generated map 

on wave 5 with blue and red bloons on the path. The dart 

monkey is currently highlighted with its one upgrade path 

finished and is currently firing at a red bloon. A yellow 

boomerang monkey is also shown near the dart monkey. 

 

2.5 Tower Implementation 

 

In our tower defense game, the functionality of our towers 

is defined in a script known as the monkey script. Each 

tower has its own specific tower script that inherits from 

the generic monkey script to avoid duplication of generic 

monkey behavior.  

 

Within the monkey script, we defined variables that each 

tower will have, such as the tower's cost to purchase, 

firing rate, targeting mode, projectile speed, and the 

number of bloon layers it can pop per hit. Additionally, 

the script contains methods that control the tower's 

behavior and interactions with the game environment. 

When the script is called, it continuously checks for 

nearby bloon enemies within the tower's range. Based on 

the tower's targeting mode, the script then selects an 

appropriate target. Once the target has been chosen, the 

tower fires a projectile at the enemy, dealing damage 

based on variables described previously.  

 

The monkey script also defines abstract methods for tower 

upgrades, providing a framework for other tower scripts to 

override and implement custom upgrade logic that is 

tailored to each tower type. Towers typically have two 

upgrade paths, each consisting of two upgrades. These 

upgrade paths enable towers to enhance their capabilities, 

such as increasing firing rate, projectile damage, or 

unlocking new abilities. 

 

Using the framework established by the monkey script, we 

proceeded to implement eight distinct tower types. These 

towers include the dart monkey (shown in Figure 3), 

boomerang monkey, cannon tower, tack tower, ninja 

monkey, super monkey, dartling gunner, and sniper 

monkey. Among these, the dart monkey and sniper 

monkey became particularly important due to their 

usefulness in training our AI. 

 

The dart monkey is set up to be an average tower in our 

game, like BTD, with an average projectile speed. It can 

pop one bloon layer per hit, making it effective against red 

bloons. Through its first upgrade path, the dart monkey 

can improve its range to reach further targets, while its 

second upgrade path increases its popping power, 

allowing it to pop up to four bloon layers per hit. The dart 

monkey's average range and projectile speed limit its 

effectiveness against harder bloon types.  

 

The sniper monkey was set up to be a longer-range tower 

with certain advantages over the dart monkey. Its 

projectile speed is significantly faster, which enables it to 

pop faster-moving bloons. Also, it has a range 25 times 

larger than that of the dart monkey, covering the entire 

map. To compensate, the sniper monkey fires much less 

frequently than the dart monkey. While it can initially pop 

the same number of bloon layers per hit as the dart 

monkey, the sniper monkey's first upgrade path can 

increase this number from one to seven, meaning that it 

can destroy most of the higher tier bloons in one hit. 



Alongside this upgrade, its second upgrade path focuses 

on increasing the projectile speed. The sniper monkey's 

ability to pop bloons from a greater distance and with 

increased speed makes it a powerful asset in popping 

faster-moving bloons during later rounds of the game. 

 

 

3. Building An Intelligent Agent 

 
Artificial Intelligence (AI) refers to the act of intelligently 

completing actions to achieve an end goal by a computer 

entity. An action refers to a task being completed that 

affects an environment that the AI is acting upon [3]. For 

our project, we used a specific field of AI called 

Reinforcement Learning (RL). RL classed agents, an 

instance of an AI, learn to interact with an environment by 

taking actions to maximize cumulative rewards. These 

rewards are defined by the user and are given to the agent 

when a decision is to be made or when a goal is or is not 

achieved [3]. However, it is worth noting that these 

rewards can be both positive or negative, positive denoting 

the agent made a series of good decisions and negative 

denoting a series of bad decisions.  

 

Through repeated trial and error, the agent refines its 

decision-making process, often employing policy 

networks and gradient-based mathematical methods to 

optimize its actions. However, basic RL encounters 

challenges such as difficulty in effectively providing 

negative rewards for undesirable behavior and dealing 

with sparse or dense reward structures [4]. To address 

these issues, techniques such as modifying reward 

structures to encourage desirable behavior have been 

developed, improving the effectiveness and efficiency of 

RL algorithms. Despite this, there can still be issues with 

the policy gradient. The gradient update occurring could 

overfit or underfit, or the function might not be able to 

comprehend the output so it chooses a suboptimal action 

that it can explain [4]. These issues can be addressed 

however with Open AI’s Proximal Policy Optimization 

(PPO) algorithms. 

 

3.1 Background: Proximal Policy 

Optimization 

 

PPO stands out as a prominent algorithm in the realm of 

RL, acclaimed for its stability and efficacy in training 

deep neural network policies [5]. As a member of the 

policy gradient methods family, PPO directly optimizes 

policies to maximize expected cumulative rewards. 

Distinguished by its on-policy approach, PPO learns from 

experiences generated by the latest iteration of its policy, 

ensuring that the training data remains relevant and 

circumventing issues associated with data distribution 

mismatches encountered in off-policy methods. 

 

Furthermore, PPO integrates supplementary terms into its 

loss functions, including updates to the baseline estimator 

(LtVF) and entropy regularization (SΠθ), along with 

weighting coefficients (c1 and c2) found in Figure 4. 

These components collectively augment training stability 

and performance across a diverse array of RL tasks, 

contributing to PPO's resilience and effectiveness called 

hyperparameters. Hyperparameters are used in shaping the 

performance and behavior of the PPO algorithm. 

Parameters such as the entropy coefficient profoundly 

influence the training dynamics and convergence 

properties of PPO. 

 

 
Figure 4: The full formula used in PPO algorithm. 

 

 
Figure 5: Graph of cumulative reward over time during a 

training session for an AI model with an overly complex 

environment. The training session was over 3.5 hours. 

Bright line shows smoothed value with the darker lines 

showing the actual value. The X axis shows the number of 

steps or decisions, and the Y axis shows the average 

cumulative reward per round. 

 

3.2 Background: ML Agents Library 
 

The goal of this project was primarily focused on the 

applications of RL, specifically PPO, in BTD and for this 

reason, we decided to use ML-Agents, a Unity Engine 

plugin that already supported PPO and other RL 

algorithms. It is characterized as a general-purpose 

machine learning agents toolkit that allows for games and 

simulation to serve as environments for training intelligent 

agents. [6] It uses the Python Pytorch and TensorFlow 

libraries on the backend and provides functionality to 

allow the programmer to interact with the libraries at a 

high level within Unity [6].  

 

To use the package, the programmer needs only to choose 

an RL model such as PPO, define the parameters for the 

model with a configuration file, provide observations to 

the model, receive, and carry out actions, and define a 

reward system. Once an environment is completed and 

contains an agent from the library, the user simply starts 

up a Pytorch environment from the command line and 

starts the Unity game allowing the two to connect over a 



device port and the agent will begin training for as many 

simulations defined by the agent's configuration file.  

 

During training sessions, the Python environment collects 

data at predetermined intervals defined in the 

configuration file and aggregates this data into a JSON 

file, also providing a way to view this data in the form of a 

webpage to analyze the AI during and after training in a 

more human-friendly way.  

 

 

3.3 Agent Configuration Overview 

 
The main purpose of the AI that we were designing was to 

reach as high of a wave as possible. To give it the best 

possible chance of doing this, we first allowed the AI to 

place most of the towers, play on a full-sized map, and be 

able to have full control over the towers (upgrade, buy, 

and sell). However, we quickly noticed the AI was 

learning very slowly or even becoming worse, in terms of 

cumulative reward as shown in Figure 5. We were also 

dealing with limited computing resources and time, so we 

decided to simplify the game for the AI. The plan was 

now to train the AI in a simple environment with limited 

actions then slowly allow the AI to have more actions and 

give it a larger environment after we determined it was 

successful at its current stage. Eventually the goal is to 

have the AI trained and efficiently playing in the full 

environment that we designed with zero restrictions on its 

actions. 

 

3.4 Agent Configuration: Environment 
 

Originally, we designed the AI training environment to be 

the same as the player environment, meaning that the AI 

was playing on a 10 by 16 grid map. However, with such a 

large map we were not seeing the AI learn anything during 

its training of about 10-15 hours. To speed up its training, 

we decided to train the AI on a smaller map and through 

numerous training scenarios. We determined that a 6 by 

10 map was both simple enough to train the AI on, but still 

large enough where tower placement and other strategies 

still mattered. 

 

Another concern with the environment was that originally, 

only one AI agent could play a game at a time. The ML-

Agents package offered support for training multiple 

agents using the same model, and we wanted to utilize 

that. So, we built an environment that had 51 agents each 

playing their own game at the same time. However, 

allowing multiple agents to train in the same environment 

led to many issues that we did not foresee. All these issues 

stemmed from using static variables in the scripts to ease 

development. For more context, since we had at least 51 

instances of each script, we could no longer use any static 

variables and had to redesign scripts that utilized those. 

After completing this redesign and allowing the AI to 

train, we immediately noticed that the number of 

completed episodes, or waves in our case, within the same 

time period was higher, leading to faster training times. 

 

3.5 Agent Configuration: Observations 
 

For the agent to be able to take actions, it needed to know 

about its environment using observations. The number of 

observations that we could provide to the model was fixed 

per training session due to the nature of ML-Agents and 

PPO. Due to this, we decided to only provide the model 

with what we deemed the most important observations 

that the agent would need to make intelligent decisions. 

These observations were the 60 tile states that came from 

the 6 by 10 map, the agent's current amount of money, 

and the agent's current wave, all of which were 

normalized as recommended by ML-Agents. We decided 

not to give it information on the bloons at the current 

state, as the number of bloons was frequently changing 

and the number of observations must stay the same 

number. However, we do plan on fixing this shortcoming 

and addressing it later. 
 
To represent each tile state for the AI, we used 

enumerations to define a tile state associated with a 

number. For example, we used a 0 to denote an open tile 

that could have a tower placed on, 1 for a bloon path tile, 

2 for a tile that contains a dart monkey, and 3 for a tile 

that contains a sniper monkey. As we implemented more 

monkeys for the AI to utilize, we would continue the 

pattern. 
 

3.6 Agent Configuration: Actions 

 

When an agent is ready to take an action as defined by the 

configuration file for the model, it makes 4 primary 

decisions. The first primary decision is what the agent 

wants to do (nothing, buy tower, sell tower, or upgrade), 

the second is the tower type that it wants to buy, the third 

is the tile location of interest, and the last is the targeting 

mode for the tower it is about to place. For our current 

version, it can only choose to do nothing or buy a tower, 

buy a dart monkey or a sniper monkey, choose any of the 

60 tiles from the 6 by 10 map, and choose any of the three 

targeting modes currently available (first, last, or 

strongest).  

 

Defining the actions in this way with ML-Agents leads to 

an issue: the package only allows the user to block the 

agent from taking a specific decision, but not a series of 

decisions in the same action. For example, we can block 

the agent from choosing to sell a tower, but we cannot 

block it from choosing to sell a tower and choosing the 

first targeting mode. The latter action does not make sense 

in relation to our game as when you are selling a tower it 

does not make sense to also choose a targeting mode, 

however we cannot prevent this. 

 



For the current model, the one type of action that we 

could block was the AI from buying a tower unless it had 

enough money, since the action of buying a tower was 

just one primary action. We decided to do this, so we 

could limit the number of times that the AI would receive 

a negative reward. 

 

 

 
Figure 6: The current reward system for the AI. 

 

3.7 Agent Configuration: Reward System 
 

To allow an AI agent to train and effectively learn an 

appropriate reward system must be defined for the model. 

The reward system dictates when and how the agent 

receives a reward, whether the reward should be positive 

or negative, and the weight of the reward. The agent then 

keeps track of its cumulative reward and the model 

attempts to maximize its reward during training while also 

exploring different series of actions. However, as defined 

by the configuration file for the AI model, the agent will 

begin to explore less over time and focus more on 

maximizing the reward with what it has already learned 

[6]. 

 

While experimenting with our AI agent, we quickly found 

that giving the agent too many negative rewards led to its 

learning quickly becoming unstable, or in other words its 

cumulative reward would drop over time as shown in 

figure 5. We later learned that ML-Agents suggests giving 

the positive rewards much more frequently and of a 

higher weight than the negative rewards [6], which led us 

to the reward system shown in Figure 6. This system was 

tweaked over the course of over 25 training simulations 

and still has room for improvement. 

 

As you can see in Figure 6, the positive rewards are of a 

much higher weight than the negative rewards. This was 

needed as the agent will finish a wave much less 

frequently than it will try to buy a tower or place one on 

an occupied tile. This is because the agent makes roughly 

one decision per second and an entire wave can take 

between 30 to 120 seconds. 
 

3.8 Results 
 

Our most recent training iteration of the AI took place 

over 5.5 days, with over 230,000 rounds played in over 

22,000 games. The aggregated data with graphs is shown 

in Figures 7 through 10. Looking at Figure 7, we can see 

that the cumulative reward is gradually increasing during 

the AI training. Whereas previously, the cumulative 

reward dropped over time, as shown in Figure 5. We 

suspect redefining the reward system with fewer penalties 

is what caused an increase in cumulative reward. 

 

Looking at Figure 10, it can be seen that the average wave 

reached drops slightly at the beginning; however, at the 

very end of the training, the average wave reaches its 

highest point. This supports the previous idea that the AI 

is doing better over time by going from an average of 

about wave 8 or 9 to almost 11. 

 

One may begin to question: if the average wave went up 

by 2, with a reward value of 0.5, how did the cumulative 

reward increase to 4 points? This can be explained by the 

AI placing towers in valid spots more frequently and 

avoiding buying towers when it does not have enough 

money. This led to the AI receiving many fewer penalties 

and achieving a much higher reward over time. 

 

In Figure 11, there is a much higher number of dart 

monkeys compared to sniper monkeys. This is also 

supported by Figure 8, where it shows an average of 

about 1 sniper monkey being bought per game and the 

frequency staying roughly the same. Whereas in Figure 9, 

the agent slowly buys more dart monkeys over time, with 

an average of about 4.5 per game.  

 

Initially, we suspected that the AI deemed the sniper 

monkey to be a weaker tower compared to the dart 

monkey. However, from our own playthroughs, we knew 

that this wasn’t true, as the sniper monkey has a much 

farther range and can target any bloon on the map. 

Whereas the dart monkey needed strategic placement to 

ensure that it could cover a good portion of the bloon 

path. Also, when looking back at previous training data, 

we found that the AI preferred the sniper monkey more. 

 

One change from earlier training iterations was to prevent 

agents from purchasing towers unless they possessed 

sufficient funds to do so. Since the dart monkey cost $100 

less than the sniper monkey, as soon as the action became 

unblocked for buying a dart monkey, it instantly bought 

that tower and never waited to buy a sniper monkey. The 

one time it had enough money to buy a sniper monkey 

was at the very start of the game since the agents start 

with $500. This is why in Figure 11, there is only 1 sniper 

monkey and many more dart monkeys. In future 

iterations, we plan to either get rid of this action block or 

find appropriate hyperparameters that would encourage it 

to explore more possible actions, like buying the sniper 

monkey. 

 

4. Related Work 

 
We are neither the first people to be interested in 

developing a tower defense game of our own, nor the first 



to try to train an agent to intelligent play such games.  A 

Colombian team developed a domain-specific language 

for modeling tower defense games in 2015. [7]. In 2019, 

another group of authors explored procedural generation 

of tower defense maps, using a much more sophisticated 

version of our map generator. [8] Another group 

approached this problem through genetic algorithms. [9] 

Work on random wave generation to produce a flow state 

in players was released in 2022. [10] 

 

Even more work has been published in the area of artificial 

intelligence for playing tower defense games.  Some have 

proposed the use of optimization models. [11] Others use 

genetic algorithms to refine neural networks that make 

tower-placement choices. [12] Most relevant to our work, 

some use deep reinforcement learning based on neural 

networks. Our work uses a different type of learning 

algorithm and different conceptions of actions, 

observations, and rewards than these prior works. [13, 14] 

 

 

5. Future Work 

 
When creating future iterations of our game, we would 

want the AI to have access to a broader array of towers 

and game mechanics. Currently, the AI is limited to 

utilizing only the dart monkey and the sniper monkey. We 

aim to expand its capabilities by allowing it to interact 

with additional towers such as the boomerang monkey, 

ninja monkey, tack tower, super monkey, cannon tower, 

and dartling gunner. We also plan on allowing the AI to 

upgrade its towers and sell them, which would give the AI 

more choices and allow for more interesting emergent 

behavior. Additionally, equipping the AI with information 

about the bloons would benefit the AI in terms of further 

complexity as it currently lacks awareness of their 

existence due to them not being an observation. This 

would make selling towers a viable option as it could 

relocate towers to a more effective area based on bloon 

information. The AI could also learn other behavior based 

on the bloon information that we have not predicted. 
 
We would also redefine our hyperparameter tuning 

methods. In previous iterations, the hyperparameter tuning 

we conducted was very sporadic, as we did not keep a 

system of parameter changes and their corresponding 

effects on the AI's performance. We did not keep track of 

these changes as we were changing a variety of 

hyperparameters, rewards, and observations between a 

training session due to a lack of time and computing 

resources. We intend to adopt a more structured approach 

by modifying one parameter at a time, thereby gaining a 

clearer understanding of the impact of each adjustment on 

the AI's behavior and rewards. 
 
Once the AI's access to game elements and its tuning 

process have been optimized, we plan to have further 

extensive training sessions. By lengthening the duration of 

training sessions, the AI will have a larger observation 

field to learn from. With this the AI becomes more 

proficient at learning. This could involve adding 

additional upgrades, towers, monkeys, and other elements 

from BTD into our game. 
 

 

6. Conclusion 

 
Our research aimed to train AI agents for a tower defense 

game using reinforcement learning. Despite challenges, 

our project showcased promising advancements. Initially, 

the AI struggled to learn efficiently due to complex 

environments and limited computing resources. However, 

by simplifying the game environment and redesigning 

scripts to accommodate multiple agents, we accelerated 

training and observed a gradual improvement in 

cumulative rewards. 

 

Key adjustments, such as refining the reward system to 

prioritize positive rewards and limiting the AI's access to 

towers and game mechanics in the short term, enhance 

performance over time. Additionally, a structured 

approach to hyperparameter tuning and extended training 

sessions are planned to further optimize the AI's 

capabilities. Our project lays the foundation for future 

advancements in AI-driven tower defense gameplay, 

offering insights into the potential of reinforcement 

learning algorithms in gaming environments. 

 

 

Figures 

 

 
Figure 7: Graph of the average cumulative reward per 

episode for the most recent iteration of the AI agent.  

 



 
Figure 8: Graph of the average number of sniper monkeys 

placed per episode on the Y axis for the most recent 

iteration of the AI agent. The X axis shows the number of 

steps or decisions. 

 

 
Figure 9: Graph of the average number of dart monkeys 

placed per episode on the Y axis for the most recent 

iteration of the AI agent. The X axis shows the number of 

steps or decisions. 

 

 
Figure 10: Graph of the average wave reached per episode 

on the Y axis for the most recent iteration of the AI agent. 

The X axis shows the number of steps or decisions. 

 

 
Figure 11: In game screenshot of the most recent AI 

iteration of the AI agent playing, currently on wave 22. 

 

 

References: 

 
[1] OpenAI. 2024. OpenAI Baselines: Proximal Policy 

Optimization. Retrieved February 24, 2024 from 

https://openai.com/research/openai-baselines-ppo  

 

[2] Unity Real-Time Development Platform. (n.d.).  

Retrieved from https://unity.com/   

 

[3] J. Shin, T. A. Badgwell, K.-H. Liu, and J. H. Lee. 

2019. "Reinforcement Learning – Overview of recent 

progress and implications for process control. Retrieved 

February 24, 2024 from 

https://www.sciencedirect.com/science/article/abs/pii/S00

98135419300754  

 

[4] J. Hare. 2019. Dealing with Sparse Rewards in 

Reinforcement Learning. Retrieved February 24, 2024 

from  https://arxiv.org/abs/1910.09281  

 

[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and 

O. Klimov. 2024. Proximal Policy Optimization 

Algorithms. Retrieved February 24, 2024 from 

https://arxiv.org/abs/1707.06347  

 

[6] Machine learning agents. (n.d.). Retrieved from  

https://unity.com/products/machine-learning-agents  

 

[7] K. Sanchez, K. Garces, & R. Casallas, A DSL for rapid 

prototyping of cross-platform tower defense games.  In 

Proc. 10th Computing Colombian Conf., Bogota, CO, 2015, 

93-99. 

 

[8] S. Liu, et. al., Automatic generation of tower defense 

levels using PCG.  In Proc. 14th Intl. Conf. on the 

Foundations of Digital Games, Sann Luis Obispo, CA, 

USA, 2019, 1-9. 

 

[9] V. Kraner, I. Fister Jr., & L. Brezocnik, Procedural 

Content Generation of Custom Tower Defense Game using 

Genetic Algorithms. In Proc. 4th New Technologies, 

Development and Applications, Sarajevo, BA, 2021, 493-

503. 

 

[10] D. Hind & C. Harvey, A NEAT Approach to Wave 

Generation in Tower Defense Games.  In Proc. Intl. Conf. 

On Interactive Media, Smart Systems, and Emerging 

Technologies, Limassol, CY, 2022, 1-8. 

 

[11] O. Mazurova, O. Samantsov, O. Topchii, & M. 

Shirokopetleva, A Study of Optimization Models for 

Creation of Artificial Intelligence for the Computer Game 

in the Tower Defense Genre.  In Proc. Intl. Conf. On 

Problem of Infocommunications, Kharkiv, UA, 2020, 491-

496. 

 

https://openai.com/research/openai-baselines-ppo
https://unity.com/
https://www.sciencedirect.com/science/article/abs/pii/S0098135419300754
https://www.sciencedirect.com/science/article/abs/pii/S0098135419300754
https://arxiv.org/abs/1910.09281
https://arxiv.org/abs/1707.06347
https://unity.com/products/machine-learning-agents


[12] T. G. Tan, Y. N. Yong, K. O. Chin, J. Teo, & R. 

Alfred, Automated Evaluation for AI Controllersin Tower 

Defense Game Using Genetic Algorithm.  In Proc. Soft 

Computing Applications and Intelligent Systems, Shah 

Alam, MY, 2013, 135-146. 

 

[13] A. Dias, J. Foleiss, & R. P. Lopes, Reinforcement 

Learning in Tower Defense.  In Proc. 2nd Videogame 

Sciences and Arts, Mirandela, PT, 2020, 127-139. 

 

[14] A. Ramirez, Neural Networks Applied to a Tower 

Defense Video Game.  A Thesis at Jaume I University, 

Castella de la Plana, ES, 2018. 


