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Java for C++ Programmers
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Why Java?

• Object-oriented (even though not 
purely…)

• Portable - programs written in the Java 
language are platform independent

• Simpler development – clever 
compiler: strong and static typing, garbage 
collection…

• Familiar – took the best out of C++.
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Java highlights

• Static typing

• Strong typing

• Encapsulation 

• Reference semantics by default

• One common root object

• Single inheritance of implementation

• Multiple inheritance of interfaces

• Dynamic binding
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JVM – Java Virtual Machine

• JVM is an interpreter that translates Java 

bytecode into real machine language 

instructions that are executed on the 

underlying, physical machine

• A Java program needs to be compiled 

down to bytecode only once; it can then 

run on any machine that has a JVM 

installed 
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Java Virtual Machine
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Running Java Programs
// file HelloWorld.java
public class HelloWorld {

public static void main(String[] args) {

System.out.println(“Hello World !”); 

}

}

> javac HelloWorld.java  

The compilation phase: This command will produce the 
java bytecode file HelloWord.class 

> java HelloWorld 

The execution phase (on the JVM): This command will 
produce the output “Hello World!”
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The main() method

• Like C and C++, Java applications must define 
a main() method in order to be run. 

• In Java, the main() method must follow a strict 
naming convention. 
– public static void main(String[] args)

• The main() method is always a member 
function of a class
– No global functions
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Types

• There are two types of variables in 

Java, primitive types (int, long, float etc.) 

and reference types (objects)

• In an assignment statement, the value

of a primitive typed variable is copied

• In an assignment statement, the pointer

of a reference typed variable is copied
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Primitive Types

-void

64-bit floating pointdouble

32-bit floating pointfloat

64-bit signed integerslong

32-bit signed integersint

16-bit signed integersshort

8-bit signed integersbyte

16-bit unicode charecterchar

true,falseboolean

ValuesType

The default value for primitive typed variables is 

zero bit pattern

The Java programming language guarantees the 

size, range, and behavior of its primitive types
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Reference Types

• Reference types in Java are objects:

– Identity: location on heap

– State: Set of fields

– Behaviour: Set of methods

• The default value of reference typed 

variables is null



11

Arrays

• Java arrays are objects, so they are declared 

using the new operator 

• The size of the array is fixed

• The length of the array is available using the 
field length.

Animal[] arr; // nothing yet …
arr = new Animal[4]; // only array of pointers
for(int i=0 ; i < arr.length ; i++) {

arr[i] = new Animal();

// now we have a complete array
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Multidimensional arrays

• Multidimensional array is an array of arrays

• Size of arrays may not be the same

Animal[][] arr; // nothing yet …
arr = new Animal[4][]; // array of array pointers
for(int i = 0; i < arr.length; i++) {

arr[i] = new Animal[i+1];

for (int j = 0; j < arr[i].length; j++){

arr[i][j]=new Animal(); 

}

}



13

Strings

• All string literals in Java programs, such as "abc", 
are instances of  String class

• Strings are immutable
– their values cannot be changed after they are created 

• Strings can be concatenated using operator+

• All objects can be converted to String

– Using toString() method defined in Object

• The class String includes methods such as:

– charAt() examines individual character

– compareTo() compares strings

– indexOf() Searches strings

– toLowerCase() Creates a lowercase copy
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Flow control

Just like C/C++:

if/else

do/while

for

switch

if(x==4) {

// act1

} else {

// act2

}

int i=5;

do {

// act1

i--;

} while(i!=0);

int j;

for(int i=0;i<=9;i++) 

{

j+=i;

}

char 

c=IN.getChar();

switch(c) {

case ‘a’:

case ‘b’:

// act1

break;

default:  

// act2

}
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Java 1.5 – new for-each loop

int[] array=new int[10];

// calculate the sum of array elements
for (int curr:array){

sum += curr;

}
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Classes in Java

• In a Java program, everything must be in a class.
– There are no global functions or global data

• Classes have fields (data members) and 
methods (member functions)

• Fields and can be defined as one-per-object, or 
one-per-class (static)

• Methods can be associated with an object, or 
with a class (static)
– Anyway, methods are defined by the class for all its 
instances

• Access modifiers (private, protected, public) are 
placed on each definition for each member (not 
blocks of declarations like C++)
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Class Example
package example;

public class Rectangle { 

public int width = 0; 

public int height = 0; 

public Point origin; 

public Rectangle() { 

origin = new Point(0, 0); 

}  

public Rectangle(int w, int h) { 

this(new Point(0, 0), w, h); 

} 

public Rectangle(Point p, int w, int h) { 

origin = p; width = w; height = h; 

} 

public void setWidth(int width) {

this.width = width; 

} 

}

fields

constructors

a method



18

Inheritance

• It is possible to inherit only from one class.

• All methods are virtual by default

class Base {

void foo() {

System.out.println(“Base”);

}

}

class Derived extends Base {

void foo() {

System.out.println(“Derived”);

}

}

public class Test {

public static void main(String[] args) {

Base b = new Derived();

b.foo();  // Derived.foo() will be activated
}

}
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Interfaces
• Defines a protocol of communication between 

two objects

• Contains declarations but no implementations

– All methods are implicitly public and abstract

– All fields are implicitly public, static and final 

(constants).

• An interface can extend any number of 

interfaces.

• Java’s compensation for removing multiple 

inheritance. A class can implement many 

interfaces.



20

Interfaces - Example

interface IDancer {

void dance();

}

interface ISinger {

void sing(Song);

}

class Actor implements ISinger, IDancer {

// overridden methods MUST be public
// since they were declared public in super class
public void sing() { … }

public void dance () { … }

}
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Abstract Classes

• abstract method means that the method does 
not have an implementation

– abstract void draw();

• abstract class a class that has at least one 
abstract method
– Must be declared abstract

– An abstract class is not-complete. Some parts of it 
need to be defined by subclasses. 

– Can’t create an object of an incomplete class: 
some of its messages will not have a behavior 
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Final

• final data member 

Constant member

• final method

The method can’t be 

overridden.

• final class

‘Base’ is final, thus it 

can’t be extended

final class Base {

final int i=5;

final void foo() {

}

}

class Derived extends Base { // Error
// another foo ...
void foo() {

}

}
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Static Data Members

• Same data is shared between all the instances 

(objects) of a Class.

• Assignment performed on the first access to the 

Class. class A {

public static int x_ = 1;

};

A a = new A();

A b = new A();

System.out.println(b.x_);

a.x_ = 5;

System.out.println(b.x_);

A.x_ = 10;

System.out.println(b.x_);

Output:

1

5

10
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Static Methods

• Static method can access only static members 

• Static method can be called without an instance.

Class TeaPot {

private static int numOfTP = 0;

private Color myColor_;

public TeaPot(Color c) { 

myColor_ = c;  

numOfTP++; 

}

public static int howManyTeaPots() 

{ return numOfTP; }

public static Color getColor() 

{ return myColor_; } // error
}



25

Java Program Organization
• Java program

– One or more Java source files

• Source file
– One or more class and/or interface declarations.

– If a class/interface is public the source file must use the 
same (base) name
• So, only one public class/interface per source file

• Packages
– When a program is large, its classes can be organized 
hierarchically into packages
• A collection of related classes and/or interfaces

• Classes are placed in a directory with the package name
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Using Packages
– Use fully qualified name 

• A qualified name of a class includes the class’ package

• Good for one-shot uses: p1.C1 myObj = new p1.C1();

– Use import statement

• at the beginning of the file, after the package statement 

• Import the package member class:
import p1.C1;

...

C1 myObj = new C1();

• Import the entire package (may lead to name ambiguity)
import p1.*;

– classes from package java.lang are automatically 
imported into every class

– To associate a class with a package, put package p as 
the first non-comment statement in a source file
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Visibility of Classes

• A class can be declared:

– public : new is allowed from All packages

– Default: new is allowed only from the same package

package P1;

public class C1 {

}

class C2 {

}

package P2;

class C3 {

}

package P3;

import P1.*;

import P2.*;

public class DO {

void foo() {

C1 c1 = new C1(); 

C2 c2 = new C2(); // error
C3 c3; // error

}

}
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Visibility of Members

• A definition in a class can be declared as: 
– public

• Can be accessed from outside the package.

– protected 
• Can be accessed from derived classes

– private 
• Can be accessed only from the current class

– default ( if no access modifier is stated )
• Usually referred to as "Package access". 

• Can be called/modified/instantiated only from 
within the same package.
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The Object Class

• Root of the class hierarchy

• Provides methods that are common 
to all objects 
– boolean equals(Object o)

– Object clone()

– int hashCode()

– String toString()

– ...
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Testing Equality

• The equality operator == returns true if and 

only if both its operands have the same value.

– Works fine for primitive types

– Only compares the identity of objects:

Integer i1 = new Integer("3");

Integer i2 = new Integer("3");

Integer i3 = i2;

i1 == i1; // Result is true
i1 == i2; // Result is False
i2 == i3; // Result is true
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Object Equality
• To compare between two objects the 
boolean equals(Object o) method is used:

– Default implementation compares using the 
equality operator.

– Most Java API classes provide a specialized 
implementation.

– Override this mehtod to provide your own 
implementation.

i1.equals(i1) // Result is true
i1 == i2; // Result is false

i1.equals(i2) // Result is true
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Example: Object Equality
public class Name 

{

String firstName;

String lastName;

...

public boolean equals(Object o)

{

if (!(o instanceof Name))

return false;

Name n = (Name)o;

return firstName.equals(n.firstName) &&

lastName.equals(lastName);

}

}

More on the subtleties of equals() later in the course…
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Wrappers

• Java provides objects which wrap primitive types.

• There is a wrapper class in java.lang package 

for every primitive type

– Byte, Short, Integer, Float, Long, Double, 

Character

Integer n = new Integer(4);

int m = n.intValue(); // java 1.4
int k=n; // java 1.5 – autoboxing

int l = Integer.parseInt(“123”); // l is 123
String s1 = n.toString(); // s1 is “4”
String s2 = “” + n; // s2 is “4”
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Garbage Collection

• C++: delete operator releases allocated 

memory.  

– Not calling it means memory leaks 

• Java:  no delete

– Objects are freed automatically by the garbage 

collector when it is clear that the program 

cannot access them any longer.

– Thus, there is no "dangling reference" problem. 

– Logical memory leaks may still occur if the 

program holds unnecessary objects.



35

Handling input/output

• Class System provides access to the native 

operating system's environment  through static

methods and fields.

• It has three fields:

– The out field is the standard output stream

• Default is the same console, can be changed

• Example: System.out.print(“Hello”);

– The err filed is the standard error output stream. 

• Used to display error messages

– The in filed is the standard input stream. 

• use it to accept user keyboard input. 

• Example: char c = (char) System.in.read();
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Scanner Class
• Scanner objects parse primitive types and strings using 

regular expressions 

• To use Scannner:    import java.util.Scanner;

• To create a scanner object: new Scanner(input_source)

– Input source can be keyboard (System.in), files, string variables, etc.

• Operations
– nextInt(), nextBoolean() - Returns value of indicated type

– next() Returns sequence of characters up to next whitespace

– findInLine () – looks for a specified pattern

– hasNext() - Returns true if this scanner has a token in its 
input. 

• Can be used to detect EOF.
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Scanner Example
int i;

double d;

String s1, s2;

Scanner sc = new Scanner(System.in);

System.out.print("Enter an integer: ");

i = sc.nextInt();

System.out.print("Enter a floating point value: ");

d = sc.nextDouble();

System.out.print("Enter a string: ");

s1 = sc.next();

System.out.print("Enter a string terminated by a new 
line: ");

s2 = sc.nextLine();

System.out.println("Here is what you entered: ");

System.out.println(i);

System.out.println(d);

System.out.println(s1);

System.out.println(s2);
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Collections

• A collection (a container in C++) is an object that 
groups multiple elements into a single unit.

• Containers can contain only objects 

– Autoboxing can help!

• The Java Collections Framework provides:
– Interfaces: abstract data types representing collections.

• allow collections to be manipulated independently of the details
of their representation.

– Implementations: concrete implementations of the 
collection interfaces.
• reusable data structures.

– Algorithms: methods that perform useful computations, 
like searching and sorting, on objects that implement 
collection interfaces.
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Collection Interfaces and Classes

LinkedList

LinkedTreeSet

TreeSetHashSetVectorArrayList

SortedSet

AbstractSet

AbstractSequentialList

AbstractList

List Set

Collection

AbstractCollection

• Vector and HashTable are old collection classes

– Not deprecated for backward compatibility reasons

– Use ArrayList and HashMap instead.
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Map Interfaces and Classes

HashMap TreeMap

LinkedHashMap

Map

SortedMap

AbstractMap
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Iterate Through Collections

• An object that implements the Iterator
interface generates a series of elements, 
one at a time
– Successive calls to the next() method return 
successive elements of the series. 

– The hasNext() method returns true if the 
iteration has more elements 

– The remove() method removes from the 
underlying collection the last element that was 
returned by next().
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Set Example

Set set = new HashSet(); // instantiate a concrete set 
set.add(obj); // insert an elements
int n = set.size(); // get size 
if (set.contains(obj)) {...} // check membership 

// iterate through the set using iterator
Iterator iter = set.iterator();

while (iter.hasNext()) {

Object e = iter.next(); 

…

}

// iterate through the set using enhanced for loop
for (Object e  : set) {

…

}
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Class Collections

• Provides static methods for manipulating 

collections

– binarySearch() searches a sorted list

– copy() copies list

– fill() replaces all list elements with a specified 

value

– indexOfSubList() – looks for a specified 

sublist within a source list

– max() returns the maximum element of a 

collection

– sort() sorts a list
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Class Arrays

• Provides static methods for manipulating 

arrays

– binarySearch() searches a sorted array

– equals() compares arrays

– fill() places values into an array

– sort() sorts an array
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Resources

Java Tutorial -

http://java.sun.com/docs/books/tutorial/

Java 6 API Spec -

http://java.sun.com/javase/6/docs/api/


