
1

Java for C++ Programmers

2

Why Java?

• Object-oriented (even though not
purely…)

• Portable - programs written in the Java
language are platform independent

• Simpler development – clever
compiler: strong and static typing, garbage
collection…

• Familiar – took the best out of C++.

3

Java highlights

• Static typing

• Strong typing

• Encapsulation

• Reference semantics by default

• One common root object

• Single inheritance of implementation

• Multiple inheritance of interfaces

• Dynamic binding

4

JVM – Java Virtual Machine

• JVM is an interpreter that translates Java

bytecode into real machine language

instructions that are executed on the

underlying, physical machine

• A Java program needs to be compiled

down to bytecode only once; it can then

run on any machine that has a JVM

installed

5

Java Virtual Machine

6

Running Java Programs
// file HelloWorld.java
public class HelloWorld {

public static void main(String[] args) {

System.out.println(“Hello World !”);

}

}

> javac HelloWorld.java

The compilation phase: This command will produce the
java bytecode file HelloWord.class

> java HelloWorld

The execution phase (on the JVM): This command will
produce the output “Hello World!”

7

The main() method

• Like C and C++, Java applications must define
a main() method in order to be run.

• In Java, the main() method must follow a strict
naming convention.
– public static void main(String[] args)

• The main() method is always a member
function of a class
– No global functions

8

Types

• There are two types of variables in

Java, primitive types (int, long, float etc.)

and reference types (objects)

• In an assignment statement, the value

of a primitive typed variable is copied

• In an assignment statement, the pointer

of a reference typed variable is copied

9

Primitive Types

-void

64-bit floating pointdouble

32-bit floating pointfloat

64-bit signed integerslong

32-bit signed integersint

16-bit signed integersshort

8-bit signed integersbyte

16-bit unicode charecterchar

true,falseboolean

ValuesType

The default value for primitive typed variables is

zero bit pattern

The Java programming language guarantees the

size, range, and behavior of its primitive types

10

Reference Types

• Reference types in Java are objects:

– Identity: location on heap

– State: Set of fields

– Behaviour: Set of methods

• The default value of reference typed

variables is null

11

Arrays

• Java arrays are objects, so they are declared

using the new operator

• The size of the array is fixed

• The length of the array is available using the
field length.

Animal[] arr; // nothing yet …
arr = new Animal[4]; // only array of pointers
for(int i=0 ; i < arr.length ; i++) {

arr[i] = new Animal();

// now we have a complete array

12

Multidimensional arrays

• Multidimensional array is an array of arrays

• Size of arrays may not be the same

Animal[][] arr; // nothing yet …
arr = new Animal[4][]; // array of array pointers
for(int i = 0; i < arr.length; i++) {

arr[i] = new Animal[i+1];

for (int j = 0; j < arr[i].length; j++){

arr[i][j]=new Animal();

}

}

13

Strings

• All string literals in Java programs, such as "abc",
are instances of String class

• Strings are immutable
– their values cannot be changed after they are created

• Strings can be concatenated using operator+

• All objects can be converted to String

– Using toString() method defined in Object

• The class String includes methods such as:

– charAt() examines individual character

– compareTo() compares strings

– indexOf() Searches strings

– toLowerCase() Creates a lowercase copy

14

Flow control

Just like C/C++:

if/else

do/while

for

switch

if(x==4) {

// act1

} else {

// act2

}

int i=5;

do {

// act1

i--;

} while(i!=0);

int j;

for(int i=0;i<=9;i++)

{

j+=i;

}

char

c=IN.getChar();

switch(c) {

case ‘a’:

case ‘b’:

// act1

break;

default:

// act2

}

15

Java 1.5 – new for-each loop

int[] array=new int[10];

// calculate the sum of array elements
for (int curr:array){

sum += curr;

}

16

Classes in Java

• In a Java program, everything must be in a class.
– There are no global functions or global data

• Classes have fields (data members) and
methods (member functions)

• Fields and can be defined as one-per-object, or
one-per-class (static)

• Methods can be associated with an object, or
with a class (static)
– Anyway, methods are defined by the class for all its
instances

• Access modifiers (private, protected, public) are
placed on each definition for each member (not
blocks of declarations like C++)

17

Class Example
package example;

public class Rectangle {

public int width = 0;

public int height = 0;

public Point origin;

public Rectangle() {

origin = new Point(0, 0);

}

public Rectangle(int w, int h) {

this(new Point(0, 0), w, h);

}

public Rectangle(Point p, int w, int h) {

origin = p; width = w; height = h;

}

public void setWidth(int width) {

this.width = width;

}

}

fields

constructors

a method

18

Inheritance

• It is possible to inherit only from one class.

• All methods are virtual by default

class Base {

void foo() {

System.out.println(“Base”);

}

}

class Derived extends Base {

void foo() {

System.out.println(“Derived”);

}

}

public class Test {

public static void main(String[] args) {

Base b = new Derived();

b.foo(); // Derived.foo() will be activated
}

}

19

Interfaces
• Defines a protocol of communication between

two objects

• Contains declarations but no implementations

– All methods are implicitly public and abstract

– All fields are implicitly public, static and final

(constants).

• An interface can extend any number of

interfaces.

• Java’s compensation for removing multiple

inheritance. A class can implement many

interfaces.

20

Interfaces - Example

interface IDancer {

void dance();

}

interface ISinger {

void sing(Song);

}

class Actor implements ISinger, IDancer {

// overridden methods MUST be public
// since they were declared public in super class
public void sing() { … }

public void dance () { … }

}

21

Abstract Classes

• abstract method means that the method does
not have an implementation

– abstract void draw();

• abstract class a class that has at least one
abstract method
– Must be declared abstract

– An abstract class is not-complete. Some parts of it
need to be defined by subclasses.

– Can’t create an object of an incomplete class:
some of its messages will not have a behavior

22

Final

• final data member

Constant member

• final method

The method can’t be

overridden.

• final class

‘Base’ is final, thus it

can’t be extended

final class Base {

final int i=5;

final void foo() {

}

}

class Derived extends Base { // Error
// another foo ...
void foo() {

}

}

23

Static Data Members

• Same data is shared between all the instances

(objects) of a Class.

• Assignment performed on the first access to the

Class. class A {

public static int x_ = 1;

};

A a = new A();

A b = new A();

System.out.println(b.x_);

a.x_ = 5;

System.out.println(b.x_);

A.x_ = 10;

System.out.println(b.x_);

Output:

1

5

10

24

Static Methods

• Static method can access only static members

• Static method can be called without an instance.

Class TeaPot {

private static int numOfTP = 0;

private Color myColor_;

public TeaPot(Color c) {

myColor_ = c;

numOfTP++;

}

public static int howManyTeaPots()

{ return numOfTP; }

public static Color getColor()

{ return myColor_; } // error
}

25

Java Program Organization
• Java program

– One or more Java source files

• Source file
– One or more class and/or interface declarations.

– If a class/interface is public the source file must use the
same (base) name
• So, only one public class/interface per source file

• Packages
– When a program is large, its classes can be organized
hierarchically into packages
• A collection of related classes and/or interfaces

• Classes are placed in a directory with the package name

26

Using Packages
– Use fully qualified name

• A qualified name of a class includes the class’ package

• Good for one-shot uses: p1.C1 myObj = new p1.C1();

– Use import statement

• at the beginning of the file, after the package statement

• Import the package member class:
import p1.C1;

...

C1 myObj = new C1();

• Import the entire package (may lead to name ambiguity)
import p1.*;

– classes from package java.lang are automatically
imported into every class

– To associate a class with a package, put package p as
the first non-comment statement in a source file

27

Visibility of Classes

• A class can be declared:

– public : new is allowed from All packages

– Default: new is allowed only from the same package

package P1;

public class C1 {

}

class C2 {

}

package P2;

class C3 {

}

package P3;

import P1.*;

import P2.*;

public class DO {

void foo() {

C1 c1 = new C1();

C2 c2 = new C2(); // error
C3 c3; // error

}

}

28

Visibility of Members

• A definition in a class can be declared as:
– public

• Can be accessed from outside the package.

– protected
• Can be accessed from derived classes

– private
• Can be accessed only from the current class

– default (if no access modifier is stated)
• Usually referred to as "Package access".

• Can be called/modified/instantiated only from
within the same package.

29

The Object Class

• Root of the class hierarchy

• Provides methods that are common
to all objects
– boolean equals(Object o)

– Object clone()

– int hashCode()

– String toString()

– ...

30

Testing Equality

• The equality operator == returns true if and

only if both its operands have the same value.

– Works fine for primitive types

– Only compares the identity of objects:

Integer i1 = new Integer("3");

Integer i2 = new Integer("3");

Integer i3 = i2;

i1 == i1; // Result is true
i1 == i2; // Result is False
i2 == i3; // Result is true

31

Object Equality
• To compare between two objects the
boolean equals(Object o) method is used:

– Default implementation compares using the
equality operator.

– Most Java API classes provide a specialized
implementation.

– Override this mehtod to provide your own
implementation.

i1.equals(i1) // Result is true
i1 == i2; // Result is false

i1.equals(i2) // Result is true

32

Example: Object Equality
public class Name

{

String firstName;

String lastName;

...

public boolean equals(Object o)

{

if (!(o instanceof Name))

return false;

Name n = (Name)o;

return firstName.equals(n.firstName) &&

lastName.equals(lastName);

}

}

More on the subtleties of equals() later in the course…

33

Wrappers

• Java provides objects which wrap primitive types.

• There is a wrapper class in java.lang package

for every primitive type

– Byte, Short, Integer, Float, Long, Double,

Character

Integer n = new Integer(4);

int m = n.intValue(); // java 1.4
int k=n; // java 1.5 – autoboxing

int l = Integer.parseInt(“123”); // l is 123
String s1 = n.toString(); // s1 is “4”
String s2 = “” + n; // s2 is “4”

34

Garbage Collection

• C++: delete operator releases allocated

memory.

– Not calling it means memory leaks

• Java: no delete

– Objects are freed automatically by the garbage

collector when it is clear that the program

cannot access them any longer.

– Thus, there is no "dangling reference" problem.

– Logical memory leaks may still occur if the

program holds unnecessary objects.

35

Handling input/output

• Class System provides access to the native

operating system's environment through static

methods and fields.

• It has three fields:

– The out field is the standard output stream

• Default is the same console, can be changed

• Example: System.out.print(“Hello”);

– The err filed is the standard error output stream.

• Used to display error messages

– The in filed is the standard input stream.

• use it to accept user keyboard input.

• Example: char c = (char) System.in.read();

36

Scanner Class
• Scanner objects parse primitive types and strings using

regular expressions

• To use Scannner: import java.util.Scanner;

• To create a scanner object: new Scanner(input_source)

– Input source can be keyboard (System.in), files, string variables, etc.

• Operations
– nextInt(), nextBoolean() - Returns value of indicated type

– next() Returns sequence of characters up to next whitespace

– findInLine () – looks for a specified pattern

– hasNext() - Returns true if this scanner has a token in its
input.

• Can be used to detect EOF.

37

Scanner Example
int i;

double d;

String s1, s2;

Scanner sc = new Scanner(System.in);

System.out.print("Enter an integer: ");

i = sc.nextInt();

System.out.print("Enter a floating point value: ");

d = sc.nextDouble();

System.out.print("Enter a string: ");

s1 = sc.next();

System.out.print("Enter a string terminated by a new
line: ");

s2 = sc.nextLine();

System.out.println("Here is what you entered: ");

System.out.println(i);

System.out.println(d);

System.out.println(s1);

System.out.println(s2);

38

Collections

• A collection (a container in C++) is an object that
groups multiple elements into a single unit.

• Containers can contain only objects

– Autoboxing can help!

• The Java Collections Framework provides:
– Interfaces: abstract data types representing collections.

• allow collections to be manipulated independently of the details
of their representation.

– Implementations: concrete implementations of the
collection interfaces.
• reusable data structures.

– Algorithms: methods that perform useful computations,
like searching and sorting, on objects that implement
collection interfaces.

39

Collection Interfaces and Classes

LinkedList

LinkedTreeSet

TreeSetHashSetVectorArrayList

SortedSet

AbstractSet

AbstractSequentialList

AbstractList

List Set

Collection

AbstractCollection

• Vector and HashTable are old collection classes

– Not deprecated for backward compatibility reasons

– Use ArrayList and HashMap instead.

40

Map Interfaces and Classes

HashMap TreeMap

LinkedHashMap

Map

SortedMap

AbstractMap

41

Iterate Through Collections

• An object that implements the Iterator
interface generates a series of elements,
one at a time
– Successive calls to the next() method return
successive elements of the series.

– The hasNext() method returns true if the
iteration has more elements

– The remove() method removes from the
underlying collection the last element that was
returned by next().

42

Set Example

Set set = new HashSet(); // instantiate a concrete set
set.add(obj); // insert an elements
int n = set.size(); // get size
if (set.contains(obj)) {...} // check membership

// iterate through the set using iterator
Iterator iter = set.iterator();

while (iter.hasNext()) {

Object e = iter.next();

…

}

// iterate through the set using enhanced for loop
for (Object e : set) {

…

}

43

Class Collections

• Provides static methods for manipulating

collections

– binarySearch() searches a sorted list

– copy() copies list

– fill() replaces all list elements with a specified

value

– indexOfSubList() – looks for a specified

sublist within a source list

– max() returns the maximum element of a

collection

– sort() sorts a list

44

Class Arrays

• Provides static methods for manipulating

arrays

– binarySearch() searches a sorted array

– equals() compares arrays

– fill() places values into an array

– sort() sorts an array

45

Resources

Java Tutorial -

http://java.sun.com/docs/books/tutorial/

Java 6 API Spec -

http://java.sun.com/javase/6/docs/api/

