Java for C++ Programmers

Why Java®?

* Object-oriented (even though not

purely...)

* Portable - programs written in the Java
language are platform independent

« Simpler development — clever
compiler: strong and static typing, garbage
collection...

« Familiar — took the best out of C++.

Java highlights

Static typing

Strong typing

Encapsulation

Reference semantics by default
One common root object

Single inheritance of implementation
Multiple inheritance of interfaces
Dynamic binding

JVM — Java Virtual Machine

 JVM is an interpreter that translates Java
bytecode into real machine language
iInstructions that are executed on the
underlying, physical machine

* A Java program needs to be compiled
down to bytecode only once; it can then
run on any machine that has a JVM
installed

Java Virtual Machine

Interpreter

Fragam
/_

FC-Compatible
Windows MNT

Compiler

AN

Interpreter

Interpreter

|

sun Ultra Solarns

Fower Macintosh
oystem B

Running Java Programs

// file HelloWorld. java
public class HelloWorld {

public static void main(String[] args) {
System.out.println(“Hello World !'”);

}
}

> Javac HelloWorld.java

The compilation phase: This command will produce the
java bytecode file HelloWord.class

> java HelloWorld

The execution phase (on the JVM): This command will
produce the output "Hello World!"

The main() method

Like C and C++, Java applications must define
amain () method in order to be run.

In Java, the main () method must follow a strict

naming convention.

—public static void main(String[] args)
The main () method is always a member

function of a class

— No global functions

Types

* There are two types of variables in

Java, primitive types (int, long, float etc.)
and reference types (objects)

* In an assignment statement, the value
of a primitive typed variable is copied

* In an assignment statement, the pointer
of a reference typed variable is copied

Primitive Types

The Java programming language guarantees the
size, range, and behavior of its primitive types

Type Values
boolean true,false
char 16-bit unicode charecter
byte 8-bit signed integers
short 16-bit signed integers
int 32-bit signed integers
long 64-bit signed integers
float 32-bit floating point
double 64-bit floating point
void

The default value for primitive typed variables is
zero bit pattern

Reference Types

» Reference types in Java are objects:

— Identity: location on heap
— State: Set of fields
— Behaviour: Set of methods

* The default value of reference typed
variables is null

10

Arrays

« Java arrays are objects, so they are declared
using the new operator

* The size of the array is fixed

Animal[] arr; // nothingyet ..

arr = new Animall[4]; // only array of pointers

for(int 1=0 ; 1 < arr.length ; i++) {
arr[i1] = new Animal () ;

// now we have a complete array

* The length of the array is available using the
fleld length.

11

Multidimensional arrays

Multidimensional array is an array of arrays
Size of arrays may not be the same

Animal[][] arr; // noThing yet ...
arr = new Animal([4][]; //array of array pointers
for(int 1 = 0; 1 < arr.length; 1i++) {
arr[i] = new Animal[i1i+1];
for (int j = 0; j < arr[i].length; J++) {
arr[1] [J]=new Animal () ;

J

12

Strings

All string literals in Java programs, such as "abc",
are instances of String class

Strings are immutable

— their values cannot be changed after they are created
Strings can be concatenated using operator+

All objects can be converted to String

— Using toString () method defined in Object

The class String includes methods such as:

— charAt () examines individual character
— compareTo () compares strings
— indexOf () Searches strings

— toLowerCase () Creates a lowercase copy
13

Flow control
Just like C/C++:

- [dowhite

int i=5;
!_ do { char

if (x==4) ({ // actl c=IN.getChar () ;
// actl i--; switch(c) {
} else { } while (1'=0) ; case ‘a’:
// act2 case ‘b’:
) for| /7 act
S o break;
e n i —a. default:
for(lnt 1i=0,;1i<=9;1i++) /) act2
Jj+=1i; }
}

Java 1.5 — new for-each loop

int[] array=new int[10];
// calculate the sum of array elements
for (int curr:array) {

sum += Ccurr;

}

15

Classes in Java

In a Java program, everything must be in a class.
— There are no global functions or global data

Classes have fields (data members) and
methods (member functions)

Fields and can be defined as one-per-object, or
one-per-class (static)

Methods can be associated with an object, or

with a class (static)

— Anyway, methods are defined by the class for all its
iInstances

Access modifiers (private, protected, public) are

placed on each definition for each member (not

blocks of declarations like C++) "

Class Example

package example;
public class Rectangle {

public int width = 0;
public int height = 0; fields

public Point origin;

public Rectangle () {
origin = new Point (0, 0);

}

public Rectangle (int w, int h) {
this (new Point (0, 0), w, h);

}

public Rectangle (Point p, int w, int h)
origin = p; width = w; height = h;

}

public void setWidth (int width) {
this.width = width;

}

{
_/

> constructors

a method
17

Inheritance

* |t is possible to inherit only from one class.
* All methods are virtual by default

class Base {
void foo () {
System.out.println (“Base”) ;
}
}

class Derived extends Base {
void foo () {
System.out.println (“Derived”);

}

}
public class Test {

public static void main(String[] args) {
Base b = new Derived();
b.foo(); [// Derived.foo() will be activated
}
}

Interfaces

Defines a profocol of communication between
two objects

Contains declarations but no implementations

— All methods are implicitly public and abstract

— All fields are implicitly public, static and final
(constants).

An interface can extend any number of

interfaces.

Java’s compensation for removing multiple
inheritance. A class can implement many
interfaces. 19

Interfaces - Example

interface ISinger {
void sing(Song) ;

}

interface IDancer {
void dance () ;

}

class Actor implements ISinger, IDancer ({

// overridden methods MUST be public
// since they were declared public in super class

public void sing ()
public void dance

e}
{ .}

20

Abstract Classes

* abstract method means that the method does
not have an implementation

—abstract void draw () ;

* absftract class a class that has at least one
abstract method
— Must be declared abstract

— An abstract class is not-complete. Some parts of it
need to be defined by subclasses.

— Can’t create an object of an incomplete class:
some of its messages will not have a behavior

21

Final

final data member
Constant member

final method]

The method can’t be
overridden.

finalclass _ — |
‘Base’ is final, thus it
can’'t be extended

final class Base {

— 1 > final int i=5;

final void foo () {
/'}

}

class Derived extends Base { // Error

. // another foo ...
void foo () {

22

Static Data Members

« Same data is shared between all the instances
(objects) of a Class.

« Assignment performed on the first access to the
Class. c1ass a |

public static int x = 1;
bi Output:
A a = new A();
A b = new A(); 1
System.out.println(b.x); 5
a.x = 5; 10
System.out.println(b.x);
A.x = 10;

System.out.println(b.x); 23

Static Methods

« Static method can access only static members
o Static method can be called without an instance.

Class TeaPot {
private static int numOfTP = O;
private Color myColor ;
public TeaPot (Color c) {
myColor = c;
numOfTP++;

}
public static int howManyTeaPots ()

{ return numOfTP; }

public static Color getColor()
{ return myColor ; } //error

Java Program Organization

e Java program
— One or more Java source files

e« Source file
— One or more class and/or interface declarations.

— If a class/interface is public the source file must use the
same (base) name

« S0, only one public class/interface per source file

« Packages
— When a program is large, its classes can be organized
hierarchically into packages

* A collection of related classes and/or interfaces
» Classes are placed in a directory with the package name

25

Using Packages

— Use fully qualified name

« A qualified name of a class includes the class’ package
» Good for one-shot uses: p1.c1 myObj = new pl.Cl();

— Use import statement

- at the beginning of the file, after the package statement

» Import the package member class:
import pl.C1l;

Cl myObj = new C1();

 Import the entire package (may lead to name ambiguity)
import pl.*;

— classes from package java.lang are automatically
imported into every class

— To associate a class with a package, put package p as
the first non-comment statement in a source file 26

Visibility of Classes

* A class can be declared:
— public : new is allowed from All packages

— Default: new is allowed only from the same package

package P1;
public class C1 {
}

class C2 {

}

package P2;
class C3 {
}

package P3;
import P1.*;
import P2.*;

public class DO ({

void foo () {
Cl cl = new C1();
C2 c2 = new C2(); //error
C3 c3; // error

} 27

Visibility of Members

A definition in a class can be declared as:
— public
« Can be accessed from outside the package.
— protected
« Can be accessed from derived classes
— private
« Can be accessed only from the current class
— default (if no access modifier is stated)

« Usually referred to as "Package access".

« Can be called/modified/instantiated only from
within the same package.

28

The Object Class

» Root of the class hierarchy

 Provides methods that are common

to all objects

—boolean equals (Object 0)
— Object clone()

—1int hashCode ()

— String toString()

29

Testing Equality

* The equality operator == returns true if and
only if both its operands have the same value.

— Works fine for primitive types
— Only compares the identity of objects:

Integer 11 = new Integer ("3");
Integer 12 = new Integer ("3");

Integer 13 = 12;

il == il; // Result is frue
i1 == 12; // Result is False
i2 == i3; // Result is frue

30

Object Equality

 To compare between two objects the
boolean equals (Object o) method is used:

— Default implementation compares using the
equality operator.

— Most Java API classes provide a specialized
Implementation.

— Override this mehtod to provide your own
Implementation.

il.equals(il) //Resultis frue
il == i2; // Result is false
il.equals(i2) //Resultis frue

31

Example: Object Equality

{

String firstName;
String lastName;

public boolean equals (Object o)
{

if (! (0o instanceof Name))
return false;
Name n = (Name) o;

return firstName.equals (n.firstName) &&
lastName.equals (lastName) ;

More on the subtleties of equals () laterin the course...

Wrappers

« Java provides objects which wrap primitive types.

Integer n = new Integer(4);
int m = n.intValue(); // javal4
int k=n; // java 1.5 - autoboxing

int 1 = Integer.parselnt (“123”); // |is 123
String sl = n.toString(); // slis “4~
Strlng S2 = 2“7 4+ n; // 52 is \\4//

* There is a wrapper class in java.lang package

for every primitive type

— Byte, Short, Integer, Float, Long, Double,

Character
33

Garbage Collection

« C++: delete operator releases allocated
memory.
— Not calling it means memory leaks

e Java: nodelete

— Objects are freed automatically by the garbage
collector when it is clear that the program
cannot access them any longer.

— Thus, there is no "dangling reference" problem.

— Logical memory leaks may still occur if the
program holds unnecessary objects.

34

Handling input/output

« Class System provides access to the native

operating system's environment through static
methods and fields.

* |t has three fields:

— The out field is the standard output stream

« Default is the same console, can be changed
« Example: System.out.print (“Hello”) ;

— The err filed is the standard error output stream.
« Used to display error messages

— The in filed is the standard input stream.
 use it to accept user keyboard input.
« Example: char ¢ = (char) System.in.read();

35

Scanner Class

Scanner objects parse primitive types and strings using
regular expressions

To use Scannner: import java.util.Scanner;

To create a scanner object: new Scanner (input source)
— Input source can be keyboard (System.in), files, string variables, etc.

Operations
- nextInt (), nextBoolean () - Returns value of indicated type
- next () Returns sequence of characters up to next whitespace
- findInLine () — looks for a specified pattern
— hasNext () - Returns true if this scanner has a token in its
input.
« Can be used to detect EOF.

36

int i;
double
String

d;
sl,

Scanner sc

System.
1 = sc.
System.
d = sc.
System.

out.

Scanner Example

S2;
= new Scanner (System.in);
print ("Enter an integer: ");

nextInt () ;

out.

print ("Enter a floating point value: ");

nextDouble () ;

out.

print ("Enter a string: ");

sl = sc.next();
System.out.print ("Enter a string terminated by a new

line:

").
4

s?2 = sc.nextLine();

System.
System.
System.
System.
System.

out.
out.
out.

out.
out.

println 'Here 1s what you entered: ");

37

Collections

A collection (a container in C++) is an object that
groups multiple elements into a single unit.

« Containers can contain only objects
— Autoboxing can help!

* The Java Collections Framework provides:

— Interfaces: abstract data types representing collections.

« allow collections to be manipulated independently of the details
of their representation.

— Implementations: concrete implementations of the
collection interfaces.

* reusable data structures.

— Algorithms: methods that perform useful computations,

like searching and sorting, on objects that implement
collection interfaces.

38

Collection Interfaces and Classes

Collection
_____________ > A -
List i Set
| A V.
A T
' SortedSet
| II }
AbstractCollectlon E N
AbstractLlst AbstractSet
AbstractSequentlalLlst\;;i\\\\\\\\\\ K\\\\
LinkedList ArrayList vVector HashSet TreeSet
LinkedTreeSet

e Vector and HashTable are old collection classes

— Not deprecated for backward compatibility reasons
— Use ArrayList and HashMap instead. 39

Map Interfaces and Classes

Map
/’ v
SortedMap
AbstractMap
HashMap TreeMap

|

LinkedHashMap

40

Iterate Through Collections

* An object that implements the ITterator
interface generates a series of elements,
one at a time

— Successive calls to the next () method return
successive elements of the series.

— The hasNext () method returns true if the
iteration has more elements

— The remove () method removes from the

underlying collection the last element that was
returned by next () .

41

Set Example

Set set = new HashSet (); // instantiate a concrete set
set.add (obj); // insert an elements

int n = set.size(); //getsize

if (set.contains(obj)) {...} // check membership

// iterate through the set using iterator

Iterator iter = set.iterator();
while (iter.hasNext()) {
Object e = iter.next();

}

// iterate through the set using enhanced for loop
for (Object e : set) {

}

42

Class Collections

* Provides static methods for manipulating
collections
—binarySearch () searches a sorted list
— copy () copies list
—fill () replaces all list elements with a specified
value

- indexOfSubList () - looks for a specified
sublist within a source list

—max () returns the maximum element of a
collection

— sort () sorts a list 43

Class Arravys

* Provides static methods for manipulating
arrays
—binarySearch () searches a sorted array
—equals () compares arrays
- f£il1l () places values into an array
- sort () sorts an array

44

Resources

Java Tutorial -
http://j]ava.sun.com/docs/books/tutorial/

Java 6 API| Spec -
http://java.sun.com/javase/6/docs/api/

45

