

Prophet Address Allocation for
Large Scale MANETs

Hongbo Zhou
Dept. of Computer Science &

Engineering
Michigan State University

East Lansing, USA
zhouhon1@cse.msu.edu

Lionel M. Ni
Dept. of Computer Science

Hong Kong University of Science &
Technology

Hong Kong, China
ni@cs.ust.hk

Matt W. Mutka
Dept. of Computer Science &

Engineering
Michigan State University

East Lansing, USA
mutka@cse.msu.edu

Abstract—A mobile device in a MANET must be assigned a free
IP address before it may participate in unicast communication.
This is a fundamental and difficult problem in the practical use of
any MANET. Several solutions have been proposed. However,
these approaches have different drawbacks. A new IP address
allocation algorithm, namely prophet allocation, is proposed in
the paper. The proposed scheme may be applied to large scale
MANETs with low complexity, low communication overhead,
even address distribution, and low latency. Both theoretical
analysis and simulation experiments are conducted to
demonstrate the superiority of the proposed algorithm over other
known algorithms. Moreover, the proposed prophet allocation is
able to solve the problem of network partition and merger
efficiently.

Keywords—MANET; autoconfiguration; address allocation

I. INTRODUCTION
Mobile ad-hoc networks (MANET) are growing in

popularity due to the abundance of mobile devices, the speed
and convenience of deployment, and the independence of
network infrastructure. In such an IP-based network, IP
address assignment to mobile devices is one of the most
important network configuration parameters. A mobile device
cannot participate in unicast communications until it is
assigned a free IP address and the corresponding subnet mask.

If a MANET is connected to a hardwired network by a
gateway, all the nodes in the MANET should have the same
network address for simplicity of routing among them and the
hardwired nodes. In other words, their addresses should be
either private addresses in IPv4 or with the same special prefix
in IPv6. Thus a mobile node may initiate communications with
a hardwired node with the aid of NAT. As for communications
initiated by the latter, mobile IP may be necessary, which is
beyond the scope of this paper.

For small scale MANETs, it may be simple and efficient to
allocate free IP addresses manually. However, the procedure
becomes difficult and impractical for a large-scale open
system where mobile nodes are free to join and leave. Much
effort has been spent on routing protocols for MANET in
recent years, such as OLSR [1], FSR [2], DSR [3], and AODV
[4], while research on automatic configuration of IP addresses

(autoconfiguration [5]) for MANET is relatively less.
Although there is a Working Group in IETF called Zeroconf
[6], it mainly focuses on the environments such as small or
home office and embedded systems.

Automatic address allocation is more difficult in a
MANET environment than that in hardwired networks due to
instability of mobile nodes, low bandwidth of wireless links,
openness of MANET, and lack of central administration.
Therefore, more overhead occurs to avoid address conflict
compared to the protocols for hardwired networks, such as
DHCP [7] and SAA [8]. However, since address allocation is
the first step toward the practical application of the MANET,
it is worth further research effort.

Before discussing address allocation issues, several
scenarios are described to illustrate the difficulty of the
problem. In the simplest scenario, a mobile node joins and
then leaves a MANET once, such as nodes A and B illustrated
in Fig. 1. An unused IP address is allocated on its arrival and
becomes free on its departure.

B

A

MANET

Figure 1. A node joins and leaves the MANET once

However, nodes are free to move arbitrarily during its
session in the MANET. If one or more configured nodes go
out of others’ transmission range for a while, the network
becomes partitioned as illustrated in Fig. 2 (a). When they
approach each other, the partitions merge later. Because
mobile nodes may not be aware of partitioning, they still use
the previously allocated IP addresses. If a new node, say B,
arrives at one partition and is assigned an IP address belonging
to the other partition, say A’s IP address, conflict happens
when these two partitions merge as illustrated in Fig. 2 (b).

Another scenario is when two separately configured
MANETs merge, which is illustrated in Fig. 3. Because
address allocation in one MANET is independent of the other,

This research was supported in part by NSF Grants No. CCR-0098017, EIA-
9911074, MSU IRGP Program and Microsoft Research Foundation.

there may be some duplicate addresses in both of them. For
example, node A in MANET 1 has the same IP address as
node B in MANET 2. As a result, some (or all) nodes in one
MANET may need to change their addresses.

B

A

Partition 2

(a) (b)

Partition 1

A

Partition 1

Partition 2

Figure 2. Network partitions and merges

A

MANET 1

B

MANET 2

Figure 3. Merger of two indpendent MANETS

In another scenario, students are free to switch between a
series of seminar rooms held at the same time. A mobile node
leaves one MANET and then joins another MANET. This
node could be regarded as the special case of the situation
mentioned above because the single node could be viewed as a
one-node partition.

The last scenario is fairly rare. Suppose there are two
independent MANETs that are close to each other. A node in
between decides to join a MANET nearby and functions as a
relay node, which leads to connection of the two MANETs.
This is the same as merger of two independent MANETs.

In summary, a feasible autoconfiguration algorithm should
handle the following three general scenarios:

Scenario A: A mobile node simply joins a MANET and
then leaves it forever;

Scenario B: A MANET partitions and then the partitions
merge later;

Scenario C: Two separately configured MANETs merge.
The paper is structured as follows. Related research efforts

are introduced in Section 2. A new IP address allocation
algorithm, namely prophet allocation, is proposed in Section 3,
which is based on sequence generation. With a little more
effort, it is able to solve the problem of network partition and
merger efficiently. Section 4 defines metrics for performance
evaluation first and then applies them to all four address
allocation schemes. According to these evaluation metrics,
conflict-detection, conflict-free, and best-effort allocation have
different drawbacks, while prophet allocation achieves low

complexity, low communication overhead, even distribution,
low latency, and high scalability, which is verified by the
simulation results presented in Section 5. Section 6 concludes
the paper.

II. RELATED WORK
Several solutions have been suggested and studied by other

researchers, which can be divided into the following three
categories.

A. Conflict-detection allocation
The conflict-detection allocation adopts a “trial and error”

policy to find a free IP address for a new mobile node in the
MANET. The new node chooses an IP address tentatively, and
requests for approval from all the configured nodes in the
MANET. If the conflict is found by veto from a node with the
same IP address, the procedure is repeated until there is no
duplicate address. At that time the node uses the latest chosen
IP address as its “permanent” address. One of the conflict-
detection allocation algorithms is the protocol proposed in [9].
Another is IPv6 autoconfiguration for MANET proposed in
[10].

The procedure above is defined as strong DAD (Duplicate
Address Detection) in [11], which is able to handle scenario A
easily, without any solution for Scenarios B and C. The so-
called weak DAD is proposed in [11], which aims to handle
network merger. It favors proactive routing protocols and
requires little modification to routing protocols.

B. Conflict-free allocation
The conflict-free allocation assigns an unused IP address to

a new node, which could be achieved by the assumption that
the nodes taking part in allocation have disjoint address pools.
Thus they could be sure that the allocated addresses are
different. Dynamic Configuration and Distribution Protocol
(DCDP) [12] is a conflict-free allocation algorithm, which was
originally proposed for autoconfiguaration in hardwired
networks. Every time when a new mobile node joins, an
address pool is divided into halves between it and a configured
node.

One advantage of conflict-free allocation is that it still
works in Scenario B. Even if the network becomes partitioned,
the nodes in different partitions still have different address
pools. Thus the addresses allocated are different as well. When
the partitions become connected, no further work is necessary.
As to Scenario C, it is very likely that there are conflicts if the
configuration of two MANETs begins with the same reserved
address range.

C. Best-effort allocation
In this approach, the nodes responsible for allocation try to

assign an unused IP address to a new node as far as they know.
At the same time the new node uses conflict detection to
guarantee that it is a free IP address.

An example of best-effort allocation is Distributed
Dynamic Host Configuration Protocol (DDHCP) proposed in
[13]. DDHCP maintains a global allocation state, which means
all mobile nodes are tracked, so it is known which IP
addresses have been used and which addresses are still free.
When a new node joins the MANET, one of its neighbors
could choose a free address for it. The reason why it still
bothers to detect conflict is that the same free IP address in the
global address pool could be assigned to two or more new
nodes arriving at almost the same time.

One advantage of DDHCP is that it works well with
proactive routing protocols, since every mobile node
broadcasts periodically. Another advantage is that it takes into
account network partition and merger. A partition ID is
generated by the node with the lowest IP address and
broadcast throughout the partition periodically. Thus, the
partition and merger may be detected by partition ID (with the
aid of periodic exchange of HELLO messages). When
partitions become connected, conflict detection and resolution
is initiated.

III. PROPHET ALLOCATION
IP address autoconfiguration is the same as assignment of

different numbers from an integer range, say R, to different
nodes. Conflict-detection allocation and best-effort allocation
use random guesses and then make sure there is no duplicate
by means of broadcast of conflict detection. Conflict-free
allocation partitions R into several disjoint subsets R1, R2, …,
Rm and chooses a random subset to divide between different
nodes.

The idea included in these algorithms is that every mobile
node obtains an unused IP address randomly on its own.
Unless a node announces its IP address throughout the
MANET, it cannot be known to others that this IP address is
occupied. What if all the IP addresses that have been allocated
and are going to be allocated are known to every participating
node in advance? Broadcast could be avoided while conflict is
still detectable.

A. Prophet allocation
Suppose we may obtain an integer sequence consisting of

numbers in R by a function, say f(n), which is stateful. The
initial state of f(n) is called the seed. Different seeds lead to
different sequences with the state of f(n) updated at the same
time. The sequences of f(n) satisfy the following two
properties (if R is large enough):

(1) The interval between two occurrences of the same
number in a sequence is extremely long;

(2) The probability of more than one occurrence of the
same number in a limited number of different
sequences initiated by different seeds during some
interval is extremely low.

Thus we could derive an IP address autoconfiguration
algorithm from the aforementioned sequence generation:

(1) The first node, say A, chooses a random number as
its IP address and uses a random state value or a
default state value as the seed for its f(n);

(2) When another node, say B, approaches A and asks A
for a free IP address, A uses f(n) to obtain another
integer, say n2, and a state value, and provides them
to B. Node A updates its state accordingly;

(3) Node B uses n2 generated by A as its IP address and
the state value obtained from node A as the seed for
its f(n);

(4) Now node A and node B are both able to assign IP
addresses to other nodes.

The communication between node A and node B may be
accomplished by means of one-hop broadcast since B does not
have an IP address yet. However, it still saves much
communication overhead compared with multi-hop broadcast
needed in conflict detection.

The algorithm is illustrated as an example in Fig. 4.
Suppose every node is represented by a 2-tuple: (address, state
of f(n)). Here R is [1,8], f(n) is (address× state× 11) mod 7
and the effective address range is [1,6]. In Fig. 4, A is the first
node in the MANET and uses a random number of 3 as its IP
address and seed. When node B joins, node A gets 1
(=(3×3×11) mod 7). Node A changes its state of f(n) to 1 and
assigns 1 to B. When C approaches A and D approaches B,
they receive 5 (=(3×1×11) mod 7) and 4 (=(1×1×11) mod
7) from A and B, respectively. In the third round of allocation,
a conflict will happen. Note that 4 out of 6 addresses are
allocated without conflict in the first 2 rounds of allocation,
and the allocation later leads to a conflict. The reason of
conflict is due to a small range of R.

A(3, 3)

A(3, 1) B(1, 1)

A(3, 5) C(5, 5) B(1, 4) D(4, 4)

Figure 4. An example of prophet allocation

In the beginning of allocation, node A chooses the seed for
the whole MANET and the sequences may be computed
locally. Therefore, node A is a prophet in the MANET, which
means it knows in advance which addresses are going to be
allocated. Thus, we call this algorithm prophet allocation.

Because the potential conflict in the allocation may be
known at node A in the beginning, it is able to launch local
conflict detection before allocation. If there are many
duplicate numbers in the sequences, node A could choose

another seed to generate other sequences until there are fewer
conflicts. Those duplicate numbers could be marked in the
beginning of allocation.

Address reclamation is unnecessary for prophet allocation
because the same number will reoccur in the sequence.
Nevertheless, the minimal interval between two occurrences in
the sequences is extremely long. When a node is assigned an
old address, say n, the previous node with the same address of
n has likely already left the MANET.

B. Mechanism for network partition and merge
Prophet allocation is able to solve the problem of network

partition and merger of a MANET easily. As for Scenario B,
because the sequences are different even if the MANET
becomes partitioned, the newly allocated addresses are still
different among the partitions. Therefore, there is no conflict if
the partitions become merged later.

With regard to Scenario C, we borrow the idea of partition
ID in DDHCP with a little modification. Here we designate
the first node in the MANET to generate the network ID
(NID) using a random number, which is propagated to new
nodes during the course of allocation. Because NID is a
random number, if the number of bits for NID is large enough,
two MANETs will have different NIDs. Since some reactive
routing protocols (e.g., AODV) require periodic exchange of
HELLO messages between neighboring nodes, if NID is
piggybacked in HELLO messages, the merger of two separate
MANETs may be easily detected.

There are two methods to handle Scenario C. The first one
is that the seed for the MANET is carried in the HELLO
messages as well. The node that detects merger is able to find
potential address conflicts between two MANETs locally by
applying f(n) on the two seed values for MANETs and initiates
conflict resolution if necessary. The possibly conflicting
addresses are contained in the message that is broadcast to
every node. If one’s IP address is contained in the list, it
changes its address accordingly. A new NID is then generated
by the detecting node and then broadcast throughout the new
larger MANET. If several nodes detect the merger at the same
time, they could initiate conflict resolution independently or
random delay is included to save repeated work. The largest
NID generated among the detection nodes is chosen as the
new NID.

However, the method above requires much computation
and communication overhead. Another simpler method is that
when mobile nodes detect the merger of two independent
MANETs, the nodes in one MANET, say MANET 1 (for
example, MANET 1 has a smaller NID), choose to discard
their current IP addresses and acquire new addresses and NID
from their neighbors in the other MANET (say MANET 2),
which propagates from the intersection of the two MANETs to
all the other nodes in MANET 1. Thus the overhead of local
conflict detection and conflict resolution mentioned above is
saved at the cost of breaking on-going connections in MANET
1. This is especially suitable for the situation of a merger of a
MANET with a one-node partition, which will be aware that it

has no neighbors with the same NID and will decide to change
its IP address.

C. Design of f(n)
The stateful function f(n) should be carefully designed. In

the example in Fig. 4, we used primes to scatter the numbers
in the sequence. In a real design, f(n) is closely related to
address range as well. For IPv4, class C private addresses of
192.168.0/24 are not large enough for dozens of mobile nodes
in the MANET because of the high probability of collision.
Class A private addresses of 10/8 and Class B private
addresses of 172.16/12 will be suitable. As to IPv6, there is no
need for such a concern because of its huge address range.

It is difficult to find such an f(n) that exactly satisfies the
two properties mentioned before. However, an f(n) that
approximately satisfies the properties is easy to design. One
such f(n) we suggest is based on the fundamental theory in
arithmetic: every positive integer may be expressed uniquely
as a product of primes, apart from the rearrangement of terms.
The canonical form of a positive number n is

n = ∏
=

k

i 1

 , where the primes pi satisfy p1 < p2 < … < pk

and the exponents are non-negative integers. Apparently, if k-
tuples (e1, e2, …, ek) have different ei (i = 1, …, k), there will
be different n. Our idea is to generate different k-tuples.

Suppose k = 4. The first node obtains a random address of
a and an initial state of (0, 0, 0, 0). Fig. 5 shows the procedure
of generating new states and updating old states. A node is
represented by (address, (e1, e2, e3, e4)), with address = (a +
2e13e25e37e4) mod range + 1 (with the exception of the first
node). The rules of state generation and update during the
allocation are: (1) the underlined element in the 4-tuple of a
configured node increases by 1; (2) the state of a new node is
copied from the allocator, but the underline shifts right by 1.

A(a, (2, 0, 0, 0)) D(a+7, (1, 1, 0, 0))

A(a, (0, 0, 0, 0))

A(a, (1, 0, 0, 0)) B(a+3, (1, 0, 0, 0))

C(a+5, (2, 0, 0, 0)) B(a+3, (1, 1, 0, 0))

Figure 5. Generation and update of states in f(n)

k may be much larger in real applications. Thus, our
algorithm requires an array of primes and exponents only and
nothing else. However, the array of exponents need not be
stored in nodes or carried in the messages between
neighboring nodes during allocation. Our simulation also
shows that optimization is achievable in the computation of
addresses.

There will be infinite different numbers generated by f(n)
in theory. However, given a small range of addresses, there
might be duplicate numbers. The possibility of duplicate

pi
ei

addresses is negligible for a small number of nodes or using
class A private addresses.

D. Protocol
Fig. 6 depicts the state transitions of a mobile node during

its session in the MANET.

Un-initialized

Waiting Configured

Local conflict
resolution

Switch to ad-hoc mode
Broadcast state request

Switch from ad-hoc mode

Received response
Configure
Retries > k

Self-configure
Received different NID

Finished

Retries <= k
Repeat broadcast

Received state request
Send reply, update state

Figure 6. The finite state machine for prophet allocation

The protocol is as follows:
1) When a mobile node switches to ad-hoc mode, it begins

periodic broadcast of state request packets, and changes from
UN-INITIALIZED state to WAITING state. Note that only
one-hop broadcast is necessary. Its MAC address may also be
carried in the request packets, which is used by the responder
to build a unicast reply;

2) The mobile node stays in the WAITING state and
repeats state request for less than or equal to k times;

3) If the mobile node receives a reply during that time, it
configures itself with the IP address, intial state value, and
NID contained in the reply, and changes to CONFIGURED
state;

4) Otherwise, it chooses itself an IP address and NID
randomly and a default state value as its initial state value and
changes to CONFIGURED state;

5) During CONFIGURED state, the mobile node repeats
broadcasting HELLO messages, sends back replies on receipt
of state request packets from other nodes, and updates its own
state accordingly;

6) If the mobile node receives a HELLO message with a
different NID, it switches to LOCAL CONFLICT
RESOLUTION state, which is described in the second
subsection. After completion of local conflict resolution, it
returns to CONFIGURED state;

7) When the mobile node ends its session in the MANET, it
switches out of ad-hoc mode and changes to UN-
INITIALIZED state.

IV. PERFORMANCE ANALYSIS
In this section, evaluation metrics for allocation

performance are first defined. Then theoretical analysis of all
four kinds of solutions is presented.

A. Metrics for performance evaluation
1) Distributed operation: A specific node in a MANET

cannot be trusted as a configuration server as the one in DHCP
because of its mobility, limited transmission range, and power
supply. Failure of any number of nodes should not prevent
autoconfiguration from working. Therefore, the algorithm
must be distributed.

2) Correctness: All three scenarios discussed in Section 1
need to be considered. No two or more nodes with the same
address could coexist for a long time. Conflict resolution
should be initiated as quickly as possible if necessary.

3) Complexity: Taking into account limited computation
power and memory capacity of mobile nodes, the solution
should be as simple as possible. The solution may consist of
several modules: allocation, conflict detection, state
maintenance, etc. The complexity of each module should be
carefully considered.

4) Communication overhead: Does the solution require
broadcast in a MANET? Or does the solution only incurs
communication between neighboring nodes? Broadcast is
extremely bandwidth-consuming, which should be avoided as
much as possible. Periodic broadcast is surely unacceptable.

5) Evenness: If the allocated addresses of most mobile
nodes are clustered in a subset of the whole address range, the
address distribution is uneven, which also means the
probability of conflict is high. Thus, conflict detection may be
launched several times and will lead to high communication
overhead. Otherwise, if the distribution is even, the probability
of conflict is low, which results in low communication
overhead.

6) Latency: The time between the point when a node
initiates autoconfiguration and the one when it is assigned a
free IP address is referred as latency. The shorter the latency,
the better. Broadcast leads to longer latency, while local
communication results in shorter latency.

7) Scalability: The bandwidth consumed by broadcast is
positively related to the number of nodes in the MANET. The
latency is proportional to the diameter of the network, which is
also positively related to the number of nodes. Therefore, if
multi-hop broadcast is required in autoconfiguration, it has
poor scalability. If most of communications happen locally, it
has excellent scalability.

All of these metrics are closely related. The more even the
distribution and the lower communication overhead, the
shorter the latency and the better scalability. In other words,
evenness and communication overhead are more important
than the other metrics.

B. Performance comparison
Table 1 presents a comparison of the aforementioned

methods. The first four rows are a characteristics summary of
the four allocation algorithms. The last five rows focus on the
qualitative evaluation of their performance.

Conflict-detection allocation is the simplest method. No
state is maintained. No address reclamation is needed.
However, broadcast adopted in conflict detection leads to high
communication overhead, high latency, and small scalability.

For example, suppose the number of mobile nodes is n, the
number of links is l, the average transmission time between
two adjacent nodes is t, the network diameter is d (in terms of
nodes), and the retry time is k. If there is no address conflict,
the number of packets needed in conflict detection is at least
(n+l) × k, and the time spent is 2 × t × d × k. Otherwise, the
communication overhead will be more and the latency will be
longer. The distribution of addresses is even because it uses
random guess. Therefore, the probability of conflict is rare
with a large address range and small number of mobile nodes.

TABLE I. CHARACTERISTICS AND PERFORMANCE COMPARISON

 Conflict
detection

Conflict
free Best effort Prophet

Network
organization

Flat /
Hierachical Flat Flat /

Hierachical Flat

State
maintanence Stateless Partially

stateful Stateful Stateful

Address
conflict Yes No Yes No

Address
reclamation Unneeded Needed Needed Unneede

d
Complexity Low High High Low
Communicat
ion overhead O((n+l)× k) O(2l/n) O((n+l)× k) O(2l/n)

Evenness of
distribution Even Possibly

uneven Even Even

Latency O(2× t× d× k) O(2t) O(2× t× d× k) O(2t)

Scalability Small Medium
/ Small Small High

Conflict-free allocation is simple in address assignment
itself. However, a difficult problem arises in the management
of the address pool. If a mobile node notifies others before it
leaves or shuts down gracefully, it could release its IP address
and address pool. However, if it leaves the MANET silently or
shuts down abruptly, it will take away its IP address and
address pool from the whole address range, which cannot be
used by others. Thus, a mechanism for address reclamation is
necessary, which is far more difficult and complicated than
allocation. As other performance metrics, because most
communication happens between neighboring nodes, it has
low communication overhead, low latency, and medium
scalability. For example, the packets needed are one-hop
broadcast messages, which is proportional to the average
number of degrees, i.e., 2l/n. The latency is proportional to the
round-trip time between two adjacent nodes, i.e., 2t. However,
the distribution of addresses depends on the allocation pattern,
which is also important for determining its scalability. For
example, if new nodes keep requesting the same configured
node for address pools, the size of the address pool will
decrease exponentially. Thus the scalability worsens. This
could be remedied by balancing the address pools among the
configured nodes, which makes the management of address
pools more difficult.

The performance of best-effort allocation is expected to be
almost the same as that of conflict-detection allocation: high
communication overhead, even distribution, high latency, and
low scalability. However, because global state is maintained,

the complexity is higher due to overhead incurred by state
management and synchronization.

From the analysis above, we can arrive at the conclusion
that the allocation algorithm must satisfy the following
properties to achieve low latency and high scalability:

(1) Local communication (which means low
communication overhead);

(2) Random assignment (which leads to even
distribution).

In prophet allocation, when a new node joins the MANET,
it just asks for one of its configured neighbors for its IP
address and initial state. Thus, the first property is satisfied.
With a carefully designed f(n), the numbers in sequences may
be distributed evenly in the integer range, and hence the
second property may be satisfied. Thus the performance in
communication overhead and latency of prophet allocation is
expected to be almost the same as that of conflict-free
allocation, while the complexity of the former is much lower
than that of the latter, and the distribution of the former is
even. As a result, the prophet allocation is suitable for large
scale MANETs.

V. SIMULATION
According to our analysis in the last section, the

performance of best-effort allocation is similar to that of
conflict-detection allocation. Simulation of the former has
been done in [13]. Therefore, we chose to implement the
conflict-detection allocation proposed in [9] together with
prophet allocation to compare their performance.

The simulation was done on ns-2 (version 2.1b8a) with
CMU extension for ad hoc networks [14]. Statistics about
communication overhead and latency in Scenario A and
Scenario B were collected to show that prophet allocation
outperforms conflict-detection allocation and best-effort
allocation for large scale MANETs.

A. Simulation parameters
The random waypoint mobility model was adopted in the

simulation [15]. After a node pauses for several seconds, a
random destination point is chosen. Then the node moves
towards that point at a maximum speed of 5 m/s, which is
repeated until the end of simulation. The pause time is 10
seconds for 50 and 80 nodes, and 20 seconds for 100, 120 and
150 nodes, respectively. Different area sizes are also
introduced to demonstrate the effect of density of nodes on the
performance. For example, scenario files of 800 × 800,
1000×1000, and 1200×1200 were simulated for 100, 120 and
150 nodes. The final results are the average of the results
obtained with all the area sizes.

During the simulation, mobile nodes join the MANET
every 30 seconds in the order of node ID. Because we aim to
investigate the performance of large scale MANETs, no node
departure is introduced in the simulation. Another reason is

that the number of nodes has no effect on the correctness of
the algorithms.

We used DSR as the ad hoc routing protocol during the
simulation. Both conflict-detection allocation and prophet
allocation have no assumptions on the underlying routing
protocols, because multi-hop broadcast and one-hop broadcast
were implemented without the aid of routing protocols.

B. Simulation verification
To verify correctness of the implementation of allocation

simulation, we first ran the simulation for 3, 4 and 5 nodes
separately. The area size was chosen to make all the nodes
connected in the topology. The simulation results are equal to
our analysis, which shows that multi-hop broadcast and one-
hop broadcast were correctly implemented in conflict-
detection allocation (CDA for short in the diagrams) and
prophet allocation (PA for short in the diagrams), respectively.
The number of received packets at each node for 3-node
simulation is illustrated in Fig. 7.

Communication overhead

6

99

222

0

2

4

6

8

10

0 1 2

Node ID

Pa
ck

et
s

CDA packets PA packets

Figure 7. Received packets at each node for 3-node simulation

C. Communication overhead
Because every successfully received packet, either unicast

packet or broadcast packet, must have consumed bandwidth
(and power as well), we use it as the evaluation metric for
communication overhead.

Fig. 8 shows the total number of packets received in 50-
node simulation with different area sizes. The number of
packets generated in conflict-detection allocation is 51.71
times of that in prophet allocation on average. As the density
of nodes decreases, the communication overhead of conflict-
detection allocation decreases because the link number
decreases, and the network becomes partitioned during the
simulation. The communication overhead of prophet
allocation decreases because the neighboring nodes become
fewer.

Communication overhead for 50 nodes

0

20000

40000

60000

80000

100000

120000

140000

250x250 300x300 400x400 500x500 600x600
Area sizes

Pa
ck

et
s

CDA packets
PA packets

Figure 8. Communication overhead for 50 nodes

Fig. 9 shows the ratio of packets in conflict-detection
allocation to those in prophet allocation for different number
of nodes, together with a linear line. According to the diagram,
the ratio of communication overhead in conflict-detection
allocation to prophet allocation is approximately proportional
to the number of nodes in the MANET, which means the more
nodes, the more gain in communication overhead in prophet
allocation.

Ratio of communication overhead

0

20

40

60

80

100

120

140

160

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

Node number

R
at

io

Ratio
Linear

Figure 9. Ratio of communication overhead of CDA to PA

D. Latency
During the simulation, the nodes participating in the

conflict-detection allocation tried a maximum of 3 times for
broadcast of duplicate address detection packets. While in
prophet allocation, except for the first node, every node tried
infinitely to broadcast state request packets until it received a
state reply from its configured neighbor. The intervals for both

are set to be the same1, so we need only to compare their retry
times.

Fig. 10 shows the average retry times in a 50-node
simulation within different sizes of areas. Most nodes receive
their responses during the first round of state request. As the
node density decreases, the retry time increases.

Latency for 50 nodes

3 3 3 3 3

1.04 1.04 1.04 1.16 1.18

0
0.5

1
1.5

2
2.5

3
3.5

250x250 300x300 400x400 500x500 600x600
Area sizes

R
et

rie
s

CDA retries
PA retries

Figure 10. Latency for 50 nodes

Fig. 11 shows the relationship of retry times and the node
number. According to the diagram, the average retry time for
prophet allocation fluctuates around 1.5 regardless of how
many mobile nodes are in the MANET. Taken into account
that the round-trip time between neighboring nodes is
independent of network size, the latency for large scale
MANETs is nearly the same as small scale MANETs, while
the latency in conflict-detection allocation increases for large
scale MANETs.

Latency

0
0.5

1
1.5

2
2.5

3
3.5

1 15 29 43 57 71 85 99 11
3

12
7

14
1

Node number

R
et

rie
s

CDA retries
PA retries

Figure 11. Latency for different node numbers

1 Of course, the interval for multi-hop broadcast in CDA
should be much longer than that for one-hop broadcast in PA;
however, they are difficult to be computed in advance.

VI. CONCLUSION
Based on studies of scenarios in IP address allocation and

several allocation algorithms proposed by other researchers,
we proposed prophet allocation for large scale MANETs,
which achieves low complexity, low communication, even
distribution, and low latency. Both theoretical analysis and
simulation results were conducted to demonstrate the
superiority of prophet allocation over three other known
methods.

With a little more effort, prophet allocation is able to
handle all the three scenarios efficiently. However, the
handling of Scenario C needs more research. For example, the
procedure should be more specific, which will be our future
work.

ACKNOWLEDGMENT
The authors wish to thank Jeff Boleng for providing the

one-hop broadcast solution to ns-2, which is the basis for our
simulation.

REFERENCES
[1] T. Clausen, P. Jacquet, A. Laouiti, et al., “Optimized Link State Routing

Protocol”, draft-ieft-manet-olsr-06.txt, September 2002 (work in
progress)

[2] M. Gerla, X. Hong, and G. Pei, “Fisheye State Routing Protocol (FSR)
for Ad Hod Networks”, draft-ietf-manet-fsr-03.txt, June 2002 (work in
progress)

[3] D. Johnson, D. Maltz, Y. Hu, and J. Jetcheva, “The Dynamic Source
Routing Protocol for Mobile Ad Hoc Networks (DSR)”, draft-ietf-
manet-dsr-07.txt, February 2002, (work in progress)

[4] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand
Distance Vector (AODV) Routing”, draft-ietf-manet-aodv-11.txt, June
2002 (work in progress)

[5] T. Narten, E. Nordmark, and W. Simpson, “Neighbor Discovery for IP
Version 6 (IPv6)”, Network Working Group RFC 2461, December 1998

[6] Zero Configuration Networking,
http://www.ietf.org/html.charters/zeroconf-charter.html

[7] R. Droms, “Dynamic Host Configuration Protocol”, Network Working
Group RFC 2131, March 1997

[8] S. Thomson and T. Narten, “IPv6 Stateless Address Autoconfiguration”,
Network Working Group RFC 2462, December 1998

[9] C. Perkins, J. Malinen, R. Wakikawa, E. Belding-Royer, and Y. Sun, “IP
Address Autoconfiguration for Ad Hoc Networks”, draft-ietf-manet-
autoconf-01.txt, November 2001 (work in progress)

[10] K. Weniger and M. Zitterbart, “IPv6 Autoconfiguration in Large Scale
Mobile Ad-Hoc Networks”, Proceedings of European Wireless 2002,
Florence, Italy, Feb. 2002

[11] N. Vaidya, “Weak Duplicate Address Detection in Mobile Ad Hoc
Networks”, submitted for MobiHoc’02, June 2002

[12] Archan Misra, Subir Das, Anthony McAuley, and Sajal K. Das,
“Autoconfiguration, Registration, and Mobility Management for
Pervasive Computing”, IEEE Personal Communication, August 2001, pp
24-31

[13] S. Nesargi and R. Prakash, “MANETconf: Configuration of Hosts in a
Mobile Ad Hoc Network”, InfoCom 2002, June 2002

[14] K. Fall and K. Varadhan (editors), The ns Manual - the VINT Project,
http://www.isi.edu/nsnam/ns/ns-documentation.html, April 2002

[15] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva, “A Performance
Comparison of Multi-Hop Wireless Ad Hoc Routing Protocols”,
Proceedings of the Fourth Annual ACM/IEEE Inter-national Conference
on Mobile Computing and Networking, pp. 85–97, October 1998.

