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Abstract—A mobile device in a MANET must be assigned a free 
IP address before it may participate in unicast communication. 
This is a fundamental and difficult problem in the practical use of 
any MANET.  Several solutions have been proposed. However, 
these approaches have different drawbacks. A new IP address 
allocation algorithm, namely prophet allocation, is proposed in 
the paper. The proposed scheme may be applied to large scale 
MANETs with low complexity, low communication overhead, 
even address distribution, and low latency. Both theoretical 
analysis and simulation experiments are conducted to 
demonstrate the superiority of the proposed algorithm over other 
known algorithms. Moreover, the proposed prophet allocation is 
able to solve the problem of network partition and merger 
efficiently. 

Keywords—MANET; autoconfiguration; address allocation 

I. INTRODUCTION 
Mobile ad-hoc networks (MANET) are growing in 

popularity due to the abundance of mobile devices, the speed 
and convenience of deployment, and the independence of 
network infrastructure. In such an IP-based network, IP 
address assignment to mobile devices is one of the most 
important network configuration parameters. A mobile device 
cannot participate in unicast communications until it is 
assigned a free IP address and the corresponding subnet mask.   

If a MANET is connected to a hardwired network by a 
gateway, all the nodes in the MANET should have the same 
network address for simplicity of routing among them and the 
hardwired nodes. In other words, their addresses should be 
either private addresses in IPv4 or with the same special prefix 
in IPv6. Thus a mobile node may initiate communications with 
a hardwired node with the aid of NAT. As for communications 
initiated by the latter, mobile IP may be necessary, which is 
beyond the scope of this paper. 

For small scale MANETs, it may be simple and efficient to 
allocate free IP addresses manually. However, the procedure 
becomes difficult and impractical for a large-scale open 
system where mobile nodes are free to join and leave. Much 
effort has been spent on routing protocols for MANET in 
recent years, such as OLSR [1], FSR [2], DSR [3], and AODV 
[4], while research on automatic configuration of IP addresses 

(autoconfiguration [5]) for MANET is relatively less. 
Although there is a Working Group in IETF called Zeroconf 
[6], it mainly focuses on the environments such as small or 
home office and embedded systems. 

Automatic address allocation is more difficult in a 
MANET environment than that in hardwired networks due to 
instability of mobile nodes, low bandwidth of wireless links, 
openness of MANET, and lack of central administration. 
Therefore, more overhead occurs to avoid address conflict 
compared to the protocols for hardwired networks, such as 
DHCP [7] and SAA [8]. However, since address allocation is 
the first step toward the practical application of the MANET, 
it is worth further research effort. 

Before discussing address allocation issues, several 
scenarios are described to illustrate the difficulty of the 
problem. In the simplest scenario, a mobile node joins and 
then leaves a MANET once, such as nodes A and B illustrated 
in Fig. 1. An unused IP address is allocated on its arrival and 
becomes free on its departure. 
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Figure 1. A node joins and leaves the MANET once 

However, nodes are free to move arbitrarily during its 
session in the MANET. If one or more configured nodes go 
out of others’ transmission range for a while, the network 
becomes partitioned as illustrated in Fig. 2 (a). When they 
approach each other, the partitions merge later. Because 
mobile nodes may not be aware of partitioning, they still use 
the previously allocated IP addresses. If a new node, say B, 
arrives at one partition and is assigned an IP address belonging 
to the other partition, say A’s IP address, conflict happens 
when these two partitions merge as illustrated in Fig. 2 (b). 

Another scenario is when two separately configured 
MANETs merge, which is illustrated in Fig. 3. Because 
address allocation in one MANET is independent of the other, 
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there may be some duplicate addresses in both of them. For 
example, node A in MANET 1 has the same IP address as 
node B in MANET 2. As a result, some (or all) nodes in one 
MANET may need to change their addresses. 
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Figure 2. Network partitions and merges 
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Figure 3. Merger of two indpendent MANETS 

In another scenario, students are free to switch between a 
series of seminar rooms held at the same time. A mobile node 
leaves one MANET and then joins another MANET. This 
node could be regarded as the special case of the situation 
mentioned above because the single node could be viewed as a 
one-node partition. 

The last scenario is fairly rare. Suppose there are two 
independent MANETs that are close to each other. A node in 
between decides to join a MANET nearby and functions as a 
relay node, which leads to connection of the two MANETs. 
This is the same as merger of two independent MANETs. 

In summary, a feasible autoconfiguration algorithm should 
handle the following three general scenarios: 

Scenario A: A mobile node simply joins a MANET and 
then leaves it forever; 

Scenario B: A MANET partitions and then the partitions 
merge later; 

Scenario C: Two separately configured MANETs merge. 
The paper is structured as follows. Related research efforts 

are introduced in Section 2. A new IP address allocation 
algorithm, namely prophet allocation, is proposed in Section 3, 
which is based on sequence generation. With a little more 
effort, it is able to solve the problem of network partition and 
merger efficiently. Section 4 defines metrics for performance 
evaluation first and then applies them to all four address 
allocation schemes. According to these evaluation metrics, 
conflict-detection, conflict-free, and best-effort allocation have 
different drawbacks, while prophet allocation achieves low 

complexity, low communication overhead, even distribution, 
low latency, and high scalability, which is verified by the 
simulation results presented in Section 5. Section 6 concludes 
the paper. 

II. RELATED WORK 
Several solutions have been suggested and studied by other 

researchers, which can be divided into the following three 
categories.  

A. Conflict-detection allocation 
The conflict-detection allocation adopts a “trial and error” 

policy to find a free IP address for a new mobile node in the 
MANET. The new node chooses an IP address tentatively, and 
requests for approval from all the configured nodes in the 
MANET. If the conflict is found by veto from a node with the 
same IP address, the procedure is repeated until there is no 
duplicate address. At that time the node uses the latest chosen 
IP address as its “permanent” address. One of the conflict-
detection allocation algorithms is the protocol proposed in [9]. 
Another is IPv6 autoconfiguration for MANET proposed in 
[10]. 

The procedure above is defined as strong DAD (Duplicate 
Address Detection) in [11], which is able to handle scenario A 
easily, without any solution for Scenarios B and C. The so-
called weak DAD is proposed in [11], which aims to handle 
network merger. It favors proactive routing protocols and 
requires little modification to routing protocols.  

B. Conflict-free allocation 
The conflict-free allocation assigns an unused IP address to 

a new node, which could be achieved by the assumption that 
the nodes taking part in allocation have disjoint address pools. 
Thus they could be sure that the allocated addresses are 
different. Dynamic Configuration and Distribution Protocol 
(DCDP) [12] is a conflict-free allocation algorithm, which was 
originally proposed for autoconfiguaration in hardwired 
networks. Every time when a new mobile node joins, an 
address pool is divided into halves between it and a configured 
node. 

One advantage of conflict-free allocation is that it still 
works in Scenario B. Even if the network becomes partitioned, 
the nodes in different partitions still have different address 
pools. Thus the addresses allocated are different as well. When 
the partitions become connected, no further work is necessary. 
As to Scenario C, it is very likely that there are conflicts if the 
configuration of two MANETs begins with the same reserved 
address range.  

C. Best-effort allocation 
In this approach, the nodes responsible for allocation try to 

assign an unused IP address to a new node as far as they know. 
At the same time the new node uses conflict detection to 
guarantee that it is a free IP address. 



 

An example of best-effort allocation is Distributed 
Dynamic Host Configuration Protocol (DDHCP) proposed in 
[13]. DDHCP maintains a global allocation state, which means 
all mobile nodes are tracked, so it is known which IP 
addresses have been used and which addresses are still free. 
When a new node joins the MANET, one of its neighbors 
could choose a free address for it. The reason why it still 
bothers to detect conflict is that the same free IP address in the 
global address pool could be assigned to two or more new 
nodes arriving at almost the same time. 

One advantage of DDHCP is that it works well with 
proactive routing protocols, since every mobile node 
broadcasts periodically. Another advantage is that it takes into 
account network partition and merger. A partition ID is 
generated by the node with the lowest IP address and 
broadcast throughout the partition periodically. Thus, the 
partition and merger may be detected by partition ID (with the 
aid of periodic exchange of HELLO messages). When 
partitions become connected, conflict detection and resolution 
is initiated. 

III. PROPHET ALLOCATION 
IP address autoconfiguration is the same as assignment of 

different numbers from an integer range, say R, to different 
nodes. Conflict-detection allocation and best-effort allocation 
use random guesses and then make sure there is no duplicate 
by means of broadcast of conflict detection. Conflict-free 
allocation partitions R into several disjoint subsets R1, R2, …, 
Rm and chooses a random subset to divide between different 
nodes. 

The idea included in these algorithms is that every mobile 
node obtains an unused IP address randomly on its own. 
Unless a node announces its IP address throughout the 
MANET, it cannot be known to others that this IP address is 
occupied. What if all the IP addresses that have been allocated 
and are going to be allocated are known to every participating 
node in advance? Broadcast could be avoided while conflict is 
still detectable. 

A. Prophet allocation 
Suppose we may obtain an integer sequence consisting of 

numbers in R by a function, say f(n), which is stateful. The 
initial state of f(n) is called the seed. Different seeds lead to 
different sequences with the state of f(n) updated at the same 
time. The sequences of f(n) satisfy the following two 
properties (if R is large enough): 

(1) The interval between two occurrences of the same 
number in a sequence is extremely long; 

(2) The probability of more than one occurrence of the 
same number in a limited number of different 
sequences initiated by different seeds during some 
interval is extremely low.  

Thus we could derive an IP address autoconfiguration 
algorithm from the aforementioned sequence generation: 

(1) The first node, say A, chooses a random number as 
its IP address and uses a random state value or a 
default state value as the seed for its f(n); 

(2) When another node, say B, approaches A and asks A 
for a free IP address, A uses f(n) to obtain another 
integer, say n2, and a state value, and provides them 
to B. Node A updates its state accordingly; 

(3) Node B uses n2 generated by A as its IP address and 
the state value obtained from node A as the seed for 
its f(n); 

(4) Now node A and node B are both able to assign IP 
addresses to other nodes. 

The communication between node A and node B may be 
accomplished by means of one-hop broadcast since B does not 
have an IP address yet. However, it still saves much 
communication overhead compared with multi-hop broadcast 
needed in conflict detection. 

The algorithm is illustrated as an example in Fig. 4. 
Suppose every node is represented by a 2-tuple: (address, state 
of f(n)). Here R is [1,8], f(n) is (address× state× 11) mod 7 
and the effective address range is [1,6]. In Fig. 4, A is the first 
node in the MANET and uses a random number of 3 as its IP 
address and seed. When node B joins, node A gets 1 
(=(3×3×11) mod 7). Node A changes its state of f(n) to 1 and 
assigns 1 to B. When C approaches A and D approaches B, 
they receive 5 (=(3×1×11) mod 7) and 4 (=(1×1×11) mod 
7) from A and B, respectively. In the third round of allocation, 
a conflict will happen. Note that 4 out of 6 addresses are 
allocated without conflict in the first 2 rounds of allocation, 
and the allocation later leads to a conflict. The reason of 
conflict is due to a small range of R. 

 
A(3, 3) 

A(3, 1) B(1, 1) 

A(3, 5) C(5, 5) B(1, 4) D(4, 4) 

 

Figure 4. An example of prophet allocation 

In the beginning of allocation, node A chooses the seed for 
the whole MANET and the sequences may be computed 
locally. Therefore, node A is a prophet in the MANET, which 
means it knows in advance which addresses are going to be 
allocated. Thus, we call this algorithm prophet allocation. 

Because the potential conflict in the allocation may be 
known at node A in the beginning, it is able to launch local 
conflict detection before allocation. If there are many 
duplicate numbers in the sequences, node A could choose 



 

another seed to generate other sequences until there are fewer 
conflicts. Those duplicate numbers could be marked in the 
beginning of allocation. 

Address reclamation is unnecessary for prophet allocation 
because the same number will reoccur in the sequence. 
Nevertheless, the minimal interval between two occurrences in 
the sequences is extremely long. When a node is assigned an 
old address, say n, the previous node with the same address of 
n has likely already left the MANET. 

B. Mechanism for network partition and merge 
Prophet allocation is able to solve the problem of network 

partition and merger of a MANET easily. As for Scenario B, 
because the sequences are different even if the MANET 
becomes partitioned, the newly allocated addresses are still 
different among the partitions. Therefore, there is no conflict if 
the partitions become merged later. 

With regard to Scenario C, we borrow the idea of partition 
ID in DDHCP with a little modification. Here we designate 
the first node in the MANET to generate the network ID 
(NID) using a random number, which is propagated to new 
nodes during the course of allocation. Because NID is a 
random number, if the number of bits for NID is large enough, 
two MANETs will have different NIDs. Since some reactive 
routing protocols (e.g., AODV) require periodic exchange of 
HELLO messages between neighboring nodes, if NID is 
piggybacked in HELLO messages, the merger of two separate 
MANETs may be easily detected.  

There are two methods to handle Scenario C. The first one 
is that the seed for the MANET is carried in the HELLO 
messages as well. The node that detects merger is able to find 
potential address conflicts between two MANETs locally by 
applying f(n) on the two seed values for MANETs and initiates 
conflict resolution if necessary. The possibly conflicting 
addresses are contained in the message that is broadcast to 
every node. If one’s IP address is contained in the list, it 
changes its address accordingly. A new NID is then generated 
by the detecting node and then broadcast throughout the new 
larger MANET. If several nodes detect the merger at the same 
time, they could initiate conflict resolution independently or 
random delay is included to save repeated work. The largest 
NID generated among the detection nodes is chosen as the 
new NID.  

However, the method above requires much computation 
and communication overhead. Another simpler method is that 
when mobile nodes detect the merger of two independent 
MANETs, the nodes in one MANET, say MANET 1 (for 
example, MANET 1 has a smaller NID), choose to discard 
their current IP addresses and acquire new addresses and NID 
from their neighbors in the other MANET (say MANET 2), 
which propagates from the intersection of the two MANETs to 
all the other nodes in MANET 1. Thus the overhead of local 
conflict detection and conflict resolution mentioned above is 
saved at the cost of breaking on-going connections in MANET 
1. This is especially suitable for the situation of a merger of a 
MANET with a one-node partition, which will be aware that it 

has no neighbors with the same NID and will decide to change 
its IP address. 

C. Design of f(n) 
The stateful function f(n) should be carefully designed. In 

the example in Fig. 4, we used primes to scatter the numbers 
in the sequence. In a real design, f(n) is closely related to 
address range as well. For IPv4, class C private addresses of 
192.168.0/24 are not large enough for dozens of mobile nodes 
in the MANET because of the high probability of collision. 
Class A private addresses of 10/8 and Class B private 
addresses of 172.16/12 will be suitable. As to IPv6, there is no 
need for such a concern because of its huge address range. 

It is difficult to find such an f(n) that exactly satisfies the 
two properties mentioned before. However, an f(n) that 
approximately satisfies the properties is easy to design. One 
such f(n) we suggest is based on the fundamental theory in 
arithmetic: every positive integer may be expressed uniquely 
as a product of primes, apart from the rearrangement of terms. 
The canonical form of a positive number n is  

n = ∏
=

k

i 1

   , where the primes pi satisfy p1 < p2 < … < pk 

and the exponents are non-negative integers. Apparently, if k-
tuples (e1, e2, …, ek) have different ei (i = 1, …, k), there will 
be different n. Our idea is to generate different k-tuples. 

Suppose k = 4. The first node obtains a random address of 
a and an initial state of (0, 0, 0, 0). Fig. 5 shows the procedure 
of generating new states and updating old states. A node is 
represented by (address, (e1, e2, e3, e4)), with address = (a + 
2e13e25e37e4) mod range + 1 (with the exception of the first 
node). The rules of state generation and update during the 
allocation are: (1) the underlined element in the 4-tuple of a 
configured node increases by 1; (2) the state of a new node is 
copied from the allocator, but the underline shifts right by 1. 

A(a, (2, 0, 0, 0)) D(a+7, (1, 1, 0, 0))

A(a, (0, 0, 0, 0)) 

A(a, (1, 0, 0, 0)) B(a+3, (1, 0, 0, 0)) 

C(a+5, (2, 0, 0, 0)) B(a+3, (1, 1, 0, 0))
 

Figure 5. Generation and update of states in f(n) 

k may be much larger in real applications. Thus, our 
algorithm requires an array of primes and exponents only and 
nothing else. However, the array of exponents need not be 
stored in nodes or carried in the messages between 
neighboring nodes during allocation. Our simulation also 
shows that optimization is achievable in the computation of 
addresses. 

There will be infinite different numbers generated by f(n) 
in theory. However, given a small range of addresses, there 
might be duplicate numbers. The possibility of duplicate 

pi
ei  



 

addresses is negligible for a small number of nodes or using 
class A private addresses. 

D. Protocol 
Fig. 6 depicts the state transitions of a mobile node during 

its session in the MANET. 
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Figure 6. The finite state machine for prophet allocation 

The protocol is as follows: 
1) When a mobile node switches to ad-hoc mode, it begins 

periodic broadcast of state request packets, and changes from 
UN-INITIALIZED state to WAITING state. Note that only 
one-hop broadcast is necessary. Its MAC address may also be 
carried in the request packets, which is used by the responder 
to build a unicast reply; 

2) The mobile node stays in the WAITING state and 
repeats state request for less than or equal to k times; 

3) If the mobile node receives a reply during that time, it 
configures itself with the IP address, intial state value, and 
NID contained in the reply, and changes to CONFIGURED 
state; 

4) Otherwise, it chooses itself an IP address and NID 
randomly and a default state value as its initial state value and 
changes to CONFIGURED state; 

5) During CONFIGURED state, the mobile node repeats 
broadcasting HELLO messages, sends back replies on receipt 
of state request packets from other nodes, and updates its own 
state accordingly; 

6) If the mobile node receives a HELLO message with a 
different NID, it switches to LOCAL CONFLICT 
RESOLUTION state, which is described in the second 
subsection. After completion of local conflict resolution, it 
returns to CONFIGURED state; 

7) When the mobile node ends its session in the MANET, it 
switches out of ad-hoc mode and changes to UN-
INITIALIZED state. 

IV. PERFORMANCE ANALYSIS 
In this section, evaluation metrics for allocation 

performance are first defined. Then theoretical analysis of all 
four kinds of solutions is presented. 

A. Metrics for performance evaluation 
1) Distributed operation: A specific node in a MANET 

cannot be trusted as a configuration server as the one in DHCP 
because of its mobility, limited transmission range, and power 
supply. Failure of any number of nodes should not prevent 
autoconfiguration from working. Therefore, the algorithm 
must be distributed. 

2) Correctness: All three scenarios discussed in Section 1 
need to be considered. No two or more nodes with the same 
address could coexist for a long time. Conflict resolution 
should be initiated as quickly as possible if necessary. 

3) Complexity: Taking into account limited computation 
power and memory capacity of mobile nodes, the solution 
should be as simple as possible. The solution may consist of 
several modules: allocation, conflict detection, state 
maintenance, etc. The complexity of each module should be 
carefully considered. 

4) Communication overhead: Does the solution require 
broadcast in a MANET? Or does the solution only incurs 
communication between neighboring nodes? Broadcast is 
extremely bandwidth-consuming, which should be avoided as 
much as possible. Periodic broadcast is surely unacceptable. 

5) Evenness: If the allocated addresses of most mobile 
nodes are clustered in a subset of the whole address range, the 
address distribution is uneven, which also means the 
probability of conflict is high. Thus, conflict detection may be 
launched several times and will lead to high communication 
overhead. Otherwise, if the distribution is even, the probability 
of conflict is low, which results in low communication 
overhead. 

6) Latency: The time between the point when a node 
initiates autoconfiguration and the one when it is assigned a 
free IP address is referred as latency. The shorter the latency, 
the better. Broadcast leads to longer latency, while local 
communication results in shorter latency. 

7)  Scalability: The bandwidth consumed by broadcast is 
positively related to the number of nodes in the MANET. The 
latency is proportional to the diameter of the network, which is 
also positively related to the number of nodes. Therefore, if 
multi-hop broadcast is required in autoconfiguration, it has 
poor scalability. If most of communications happen locally, it 
has excellent scalability. 

All of these metrics are closely related. The more even the 
distribution and the lower communication overhead, the 
shorter the latency and the better scalability. In other words, 
evenness and communication overhead are more important 
than the other metrics. 

B. Performance comparison 
Table 1 presents a comparison of the aforementioned 

methods. The first four rows are a characteristics summary of 
the four allocation algorithms. The last five rows focus on the 
qualitative evaluation of their performance. 

Conflict-detection allocation is the simplest method. No 
state is maintained. No address reclamation is needed. 
However, broadcast adopted in conflict detection leads to high 
communication overhead, high latency, and small scalability. 



 

For example, suppose the number of mobile nodes is n, the 
number of links is l, the average transmission time between 
two adjacent nodes is t, the network diameter is d (in terms of 
nodes), and the retry time is k. If there is no address conflict, 
the number of packets needed in conflict detection is at least 
(n+l) × k, and the time spent is 2 × t × d × k. Otherwise, the 
communication overhead will be more and the latency will be 
longer. The distribution of addresses is even because it uses 
random guess. Therefore, the probability of conflict is rare 
with a large address range and small number of mobile nodes. 

TABLE I. CHARACTERISTICS AND PERFORMANCE COMPARISON 

 Conflict 
detection 

Conflict 
free Best effort Prophet 

Network 
organization 

Flat / 
Hierachical Flat Flat / 

Hierachical Flat 

State 
maintanence Stateless Partially 

stateful Stateful Stateful 

Address 
conflict Yes No Yes No 

Address 
reclamation Unneeded Needed Needed Unneede

d 
Complexity Low High High Low 
Communicat
ion overhead  O((n+l)× k) O(2l/n)  O((n+l)× k) O(2l/n) 

Evenness of 
distribution Even Possibly 

uneven Even Even 

Latency O(2× t× d× k) O(2t) O(2× t× d× k) O(2t) 

Scalability Small Medium 
/ Small Small High 

 

Conflict-free allocation is simple in address assignment 
itself. However, a difficult problem arises in the management 
of the address pool. If a mobile node notifies others before it 
leaves or shuts down gracefully, it could release its IP address 
and address pool. However, if it leaves the MANET silently or 
shuts down abruptly, it will take away its IP address and 
address pool from the whole address range, which cannot be 
used by others. Thus, a mechanism for address reclamation is 
necessary, which is far more difficult and complicated than 
allocation. As other performance metrics, because most 
communication happens between neighboring nodes, it has 
low communication overhead, low latency, and medium 
scalability. For example, the packets needed are one-hop 
broadcast messages, which is proportional to the average 
number of degrees, i.e., 2l/n. The latency is proportional to the 
round-trip time between two adjacent nodes, i.e., 2t. However, 
the distribution of addresses depends on the allocation pattern, 
which is also important for determining its scalability. For 
example, if new nodes keep requesting the same configured 
node for address pools, the size of the address pool will 
decrease exponentially. Thus the scalability worsens. This 
could be remedied by balancing the address pools among the 
configured nodes, which makes the management of address 
pools more difficult. 

The performance of best-effort allocation is expected to be 
almost the same as that of conflict-detection allocation: high 
communication overhead, even distribution, high latency, and 
low scalability. However, because global state is maintained, 

the complexity is higher due to overhead incurred by state 
management and synchronization. 

From the analysis above, we can arrive at the conclusion 
that the allocation algorithm must satisfy the following 
properties to achieve low latency and high scalability: 

(1) Local communication (which means low 
communication overhead); 

(2) Random assignment (which leads to even 
distribution). 

In prophet allocation, when a new node joins the MANET, 
it just asks for one of its configured neighbors for its IP 
address and initial state. Thus, the first property is satisfied. 
With a carefully designed f(n), the numbers in sequences may 
be distributed evenly in the integer range, and hence the 
second property may be satisfied. Thus the performance in 
communication overhead and latency of prophet allocation is 
expected to be almost the same as that of conflict-free 
allocation, while the complexity of the former is much lower 
than that of the latter, and the distribution of the former is 
even. As a result, the prophet allocation is suitable for large 
scale MANETs. 

V. SIMULATION 
According to our analysis in the last section, the 

performance of best-effort allocation is similar to that of 
conflict-detection allocation. Simulation of the former has 
been done in [13]. Therefore, we chose to implement the 
conflict-detection allocation proposed in [9] together with 
prophet allocation to compare their performance. 

The simulation was done on ns-2 (version 2.1b8a) with 
CMU extension for ad hoc networks [14]. Statistics about 
communication overhead and latency in Scenario A and 
Scenario B were collected to show that prophet allocation 
outperforms conflict-detection allocation and best-effort 
allocation for large scale MANETs. 

A. Simulation parameters 
The random waypoint mobility model was adopted in the 

simulation [15]. After a node pauses for several seconds, a 
random destination point is chosen. Then the node moves 
towards that point at a maximum speed of 5 m/s, which is 
repeated until the end of simulation. The pause time is 10 
seconds for 50 and 80 nodes, and 20 seconds for 100, 120 and 
150 nodes, respectively. Different area sizes are also 
introduced to demonstrate the effect of density of nodes on the 
performance. For example, scenario files of 800 × 800, 
1000×1000, and 1200×1200 were simulated for 100, 120 and 
150 nodes. The final results are the average of the results 
obtained with all the area sizes. 

During the simulation, mobile nodes join the MANET 
every 30 seconds in the order of node ID. Because we aim to 
investigate the performance of large scale MANETs, no node 
departure is introduced in the simulation. Another reason is 



 

that the number of nodes has no effect on the correctness of 
the algorithms. 

We used DSR as the ad hoc routing protocol during the 
simulation. Both conflict-detection allocation and prophet 
allocation have no assumptions on the underlying routing 
protocols, because multi-hop broadcast and one-hop broadcast 
were implemented without the aid of routing protocols. 

B. Simulation verification 
To verify correctness of the implementation of allocation 

simulation, we first ran the simulation for 3, 4 and 5 nodes 
separately. The area size was chosen to make all the nodes 
connected in the topology. The simulation results are equal to 
our analysis, which shows that multi-hop broadcast and one-
hop broadcast were correctly implemented in conflict-
detection allocation (CDA for short in the diagrams) and 
prophet allocation (PA for short in the diagrams), respectively. 
The number of received packets at each node for 3-node 
simulation is illustrated in Fig. 7. 
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Figure 7. Received packets at each node for 3-node simulation 

C. Communication overhead 
Because every successfully received packet, either unicast 

packet or broadcast packet, must have consumed bandwidth 
(and power as well), we use it as the evaluation metric for 
communication overhead.  

Fig. 8 shows the total number of packets received in 50-
node simulation with different area sizes. The number of 
packets generated in conflict-detection allocation is 51.71 
times of that in prophet allocation on average. As the density 
of nodes decreases, the communication overhead of conflict-
detection allocation decreases because the link number 
decreases, and the network becomes partitioned during the 
simulation. The communication overhead of prophet 
allocation decreases because the neighboring nodes become 
fewer. 
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Figure 8. Communication overhead for 50 nodes 

Fig. 9 shows the ratio of packets in conflict-detection 
allocation to those in prophet allocation for different number 
of nodes, together with a linear line. According to the diagram, 
the ratio of communication overhead in conflict-detection 
allocation to prophet allocation is approximately proportional 
to the number of nodes in the MANET, which means the more 
nodes, the more gain in communication overhead in prophet 
allocation. 
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Figure 9. Ratio of communication overhead of CDA to PA 

D. Latency 
During the simulation, the nodes participating in the 

conflict-detection allocation tried a maximum of 3 times for 
broadcast of duplicate address detection packets. While in 
prophet allocation, except for the first node, every node tried 
infinitely to broadcast state request packets until it received a 
state reply from its configured neighbor. The intervals for both 



 

are set to be the same1, so we need only to compare their retry 
times. 

Fig. 10 shows the average retry times in a 50-node 
simulation within different sizes of areas. Most nodes receive 
their responses during the first round of state request. As the 
node density decreases, the retry time increases. 
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Figure 10. Latency for 50 nodes 

Fig. 11 shows the relationship of retry times and the node 
number. According to the diagram, the average retry time for 
prophet allocation fluctuates around 1.5 regardless of how 
many mobile nodes are in the MANET. Taken into account 
that the round-trip time between neighboring nodes is 
independent of network size, the latency for large scale 
MANETs is nearly the same as small scale MANETs, while 
the latency in conflict-detection allocation increases for large 
scale MANETs. 
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Figure 11. Latency for different node numbers 

                                                           
1  Of course, the interval for multi-hop broadcast in CDA 
should be much longer than that for one-hop broadcast in PA; 
however, they are difficult to be computed in advance. 

VI. CONCLUSION 
Based on studies of scenarios in IP address allocation and 

several allocation algorithms proposed by other researchers, 
we proposed prophet allocation for large scale MANETs, 
which achieves low complexity, low communication, even 
distribution, and low latency. Both theoretical analysis and 
simulation results were conducted to demonstrate the 
superiority of prophet allocation over three other known 
methods.  

With a little more effort, prophet allocation is able to 
handle all the three scenarios efficiently. However, the 
handling of Scenario C needs more research. For example, the 
procedure should be more specific, which will be our future 
work. 
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