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Abstract—When compared with a fixed host that is connected to 
a hardwired network, a mobile node in the MANET may change 
its IP address more frequently due to the deployment of 
autoconfiguration, global connectivity, and hierarchical 
addressing schemes. When an IP address changes, the 
performance of unicast routing protocols and real-time 
communications may degrade, and privacy may be compromised 
within the MANET. Although there have been some 
autoconfiguration algorithms proposed for the assignment of 
unique IP addresses to mobile nodes, the overhead resulting from 
address changes has not been carefully examined. Based on 
studies of the overhead caused by address change, an IP address 
handoff solution, which extends the unicast routing protocol and 
Network Address Translation (NAT) scheme, is proposed in the 
paper. The proposed approach is able to offset the overhead of 
broken routing fabrics and on-going communications, which is 
supported by our analysis and a prototype implementation. 
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I.  INTRODUCTION 
A Mobile Ad-hoc Network (MANET) is a temporary 

wireless network composed of mobile nodes without an 
infrastructure. A MANET may be suitable for networks within 
airports, meeting rooms, and open spaces due to both 
economical and technological feasibilities. Because the 
MANET is based upon IP protocol suites, a node in the 
MANET cannot take part in unicast communications until it is 
configured with a free IP address. 

Although it is simple to set IP addresses of mobile nodes in 
a small scale MANET, it becomes desirable for the procedure 
to be automatic for a large scale open MANET where mobile 
nodes are free to join and leave, which has motivated research 
efforts into the study of autoconfiguration in MANETs [1]-[8]. 

Another problem associated with IP address assignment of 
a mobile node is that the IP address may change during its 
session in the MANET. IP address change is not a serious 
problem in hardwired networks because the IP address of a 
host is either statically configured or dynamically allocated by 
a DHCP server. It usually does not change its IP address during 
a session unless it reboots. However, because the nodes in the 
MANET are free to move arbitrarily, IP address change 
happens more frequently when applied with autoconfiguration, 
global connectivity, and hierarchical addressing schemes. 

There are several scenarios in which a mobile node will 
change its IP address: 

(1) Merger of two partitions of a network 

If some mobile nodes in the MANET move out of the 
transmission range of the other nodes, the network becomes 
partitioned as illustrated in Fig. 1(a). Because these nodes may 
not be aware of the partition, they may still use the previous 
allocated addresses. If the IP address of a node (say node A) in 
one partition is allocated to the new node (say node B) in the 
other partition, address conflict occurs when these two 
partitions become connected, as illustrated in Fig.1 (b). One 
example is when some attendants leave a meeting room for a 
short period and then return during a presentation session. The 
prophet address allocation is insensitive to this scenario [6] [7], 
while the nodes in one partition may need to change their 
addresses with DDHCP [5]. 

 
 
 
 
 
 
 
 
 

Figure 1.  A network is partitioned and then merged later 

(2) Merger of two independent MANETs 

The second scenario is that two independently configured 
MANETs merge. Because these two networks are 
autoconfigured separately, there may be some duplicate 
addresses in both networks, such as node A in MANET 1 and 
node B in MANET 2 in Fig. 2. Thus, one needs to change its 
address due to the merger. 

 

 

 

 

 

Figure 2.  Merger of two independent MANETs 

(3) Merger of a MANET with a LAN 
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The third scenario is that a MANET merges with a LAN 
that has an “ad-hoc” mode Access Point (AP)1. The mobile 
nodes (such as node R in Fig. 3) that are within transmission 
range of the AP of the LAN may want to use the configuration 
information (e.g., a free IP address in the LAN and the default 
router) broadcast by the AP to configure itself and function as a 
relay node. As a result, the MANET becomes connected to the 
Internet [9] [10]. Furthermore, if the MANET and the LAN use 
the same private address range, there may be duplicate 
addresses in both the MANET and LAN, such as node A and 
node B in Fig. 3. Because the hardwired host in the LAN may 
not be willing to release its address, the node in the MANET 
will have to change its address. 

 
 
 
 
 
 
 
 
 
 

Figure 3.  The merger of a MANET and a WLAN 

(4) A MANET with a hierarchical addressing scheme 

In the network where a hierarchical addressing scheme is 
deployed [11], the mobile nodes are divided into different 
clusters, each of which has a unique subnet address. When a 
mobile node (such as node A in Fig. 4) moves from one cluster 
to another cluster, it will change its address to one with the 
corresponding subnet address. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  A MANET with hierarchical addressing scheme 

Although many autoconfiguration algorithms for MANETs 
have been proposed to allocate a mobile node a free IP address 
on its arrival in the MANET without an address conflict, few 
consider the issue of IP address change. To the best of our 
knowledge, this paper is the first effort to present a systematic 
solution for IP address handoff in the MANET. 

The paper is structured as follows. Section 2 discusses the 
overhead caused by IP address change of a mobile node during 
                                                           

1 For example, the AP from Ericsson is able to support both ad hoc and 
infrastructure modes simultaneously. 

its session in the MANET. Some related work on handoff 
schemes is introduced in Section 2 as well. However, none of 
these solutions can solve the problem systematically and 
satisfactorily. The solutions to remedy the overhead due to 
broken routing fabrics and on-going communications are 
presented in Section 3 and Section 4, respectively. Section 5 
gives analytical evaluation of the performance and discusses its 
limitations, other scenarios and challenges to key management 
in MANETs. A prototype implementation and test are 
introduced in Section 6. Section 7 concludes the paper. 

II. ISSUES AND RELATED WORK 
This section discusses the motivation for IP address handoff 

and introduces related work. 

A. Motivation 
There are two major issues resulting from IP address 

change of a mobile node in the MANET: 

1) Broken routing fabrics 
Unlike the hosts connected to the edge networks, all the 

nodes in a large-scale MANET have to function as routers (i.e., 
multi-hop routing). If a node changes its IP address, all the 
routing entries that point to the node as the downstream next 
hop will be obsolete. 

Fig. 5 gives an example of a simple MANET composed of 
5 nodes in a chain with AODV [12]2 as the routing protocol. 
Suppose that the IP address of node C is x. The routing tables at 
node B and node D are also shown in Fig. 5. When node C 
changes its address from x to y, all the routing entries in node B 
and D will be invalid. 

 
 
 
 
 
 
 

Figure 5.  A MANET of 5 nodes in a chain 

According to the specification of AODV, after two HELLO 
message intervals (i.e., 2 seconds), nodes B and D will detect 
downstream link breakage. If the destination of data packets is 
within the distance of certain hops, nodes B and D may initiate 
scoped broadcasts to rebuild the path between B and D; 
otherwise, they will send a Route Error (RERR) packet back to 
nodes A and E respectively, which triggers flooding of route 
rediscovery packets.  

In a more complicated topology, node C will have many 
neighbors and will be on many active paths. Thus, much 
overhead will incur for route maintenance. 

2) Broken on-going communications 
While referring to Fig. 5, suppose that node A is 

communicating with node E. If node E changes its address 
                                                           

2  The routing protocols that support multiple paths, such as DSR, are 
insensitive to the IP address change of a node along the path. 
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from u to v, the on-going communications between A and E 
will be broken, which does not meet the requirement of real-
time multimedia applications.  

Because the address of u will not exist any longer (if the 
address change is not caused by address conflict), the local 
repair mechanism of AODV will fail eventually. As a result, 
the overhead of route rediscovery is inevitable. Even if node A 
initiates route rediscovery, it will not find the destination, 
unless the DNS scheme proposed in [13] is combined with the 
reactive routing protocol. 

An ad-hoc approach is that node E resumes the connection 
actively. However, because node E may be a server of an 
application (e.g., the user of node E is running a FTP server so 
that other participants of the meeting can download documents 
from him), it is not responsible for the initiation of 
communication. Furthermore, the application may run in the 
background or the user of node E may not be aware of the 
broken communication. Thus, we need a better solution. 

IP address change may compromise privacy as well. One 
example is the case of the merger of two MANETs. Suppose 
that node C is running a VoIP application with node B in 
MANET 2, as illustrated in Fig. 2. Because node B has the 
same address as node A in MANET 1, node B will change its 
address after the merger (for example, MANET 2 has a smaller 
NID [6] [7]). If node A keeps its address, the route 
maintenance procedure will rebuild the path between node C 
and node A. Thus, the voice data packets destined for node B 
will be redirected to node A. Suppose that node A is also 
running the VoIP application simultaneously, and that they use 
the same UDP ports. If the voice data packets are not 
encrypted, node C will talk with node A for a while until it 
realizes that it is speaking with a wrong party in the middle of 
the communication. 

B. Related work 
Several schemes have been proposed for IP address handoff 

in hardwired networks and MANETs. However, none of these 
approaches can solve the issue in the four aforementioned 
scenarios systematically and satisfactorily. 

1) Mobile IP 
Mobile IP intends to provide basic support for mobile hosts 

in a LAN [14]. According to the scheme, a mobile host is 
assigned a permanent home address that is bound with its home 
agent. When it becomes connected to a foreign network, it 
receives a temporary care-of address and other information 
(e.g., the subnet mask and default router) from the foreign 
agent. The mobile host registers its current care-of address at 
its home agent, which then builds a tunnel between itself and 
the foreign agent. When another host initiates communication 
with the mobile host, it usually gets the mobile host’s home 
address from DNS query and sends the packets to the home 
address. The packets will be then forwarded to the mobile 
host’s care-of address by the home agent through the IP tunnel. 

Mobile IP is efficient for IP address handoff in a LAN that 
has an infrastructure. However, because the nodes in the 
MANET are mobile and instable, none of them can be 

designated as the home agent or foreign agent for another node. 
Thus, it cannot be applied in the MANET. 

2) Tunneling mechanism 
In addition to autoconfiguration in the MANET, the scheme 

in [8] proposed a solution for the maintenance of 
communication states after address changes. The node (say 
node A) that changes its IP address notifies the other end (say 
node B) with a special Address Error (AERR) message. From 
then on, they communicate with each other through an IP-in-IP 
tunnel: the outer IP header contains the A’s new address, while 
the inner IP header contains A’s old address. Unlike the IP 
tunneling in Mobile IP, the communicating nodes A and B are 
also the end points of the tunnel: the source encapsulates the 
packet that is decapsulated at the destination. 

This approach is able to preserve communication states at 
both ends, but neglects the overhead caused by broken routing 
fabrics. Furthermore, it brings a “DoS” problem that will be 
discussed in Section 4. 

III. SOLUTIONS TO BROKEN ROUTING FABRICS 
Unlike the link breakage caused by node movement, the 

overhead of broken routing fabrics is due to IP address change 
of a node. Because the node may still be within the 
transmission range of its neighbors, and it is aware of the 
address change, a simple solution can be implemented to 
remedy this kind of overhead3. 

We assume AODV as the routing protocol. Suppose that 
node C changes its address from x to y, as illustrated in Fig. 5. 
Node C can notify all its neighbors (such as nodes B and E) of 
the address change. A new routing control packet, namely 
Route Shift packet, can be introduced into AODV scheme. The 
packet is a one-hop broadcast packet that contains the source’s 
old address and new address. On receipt of the packet, the 
neighbors change the next hop from x to y in all the routing 
entries with node C as the next hop. 

However, this solution is vulnerable to IP spoofing attacks, 
which are difficult to detect and prevent in MANETs that have 
no infrastructure. With the introduction of the Route Shift 
packet, a malicious node can impersonate another node and 
broadcast the packet to undermine the routing fabrics. We need 
a way to identify the source of the packet.  

One solution is to use a cryptographic method such as a 
digital signature, in which node C signs the Route Shift packet 
with its private key. All its neighbors contact the Certificate 
Authority (CA) to get the certificate for node C’s public key 
and validate the Route Shift packet. Although this method can 
defeat IP spoofing attacks, it brings delay and communication 
overhead. 

Our solution is that node C chooses a random number for 
its current address x, and puts the hash value of the number in 
the Route Request packet and Route Reply packet4 in transit, 
and periodical HELLO messages. All its neighbors store the 
                                                           

3 If the address change happens with link breakage simultaneously, the 
broken routing fabrics will be repaired with route maintenance. 

4 These routing control packets are not destined for node C itself. 



hash value in either their neighbor tables or routing tables. 
When node A changes its address, it puts the random number 
in the Route Shift packet. Because the packet is a one-hop 
broadcast packet, which will be received by its neighbors 
simultaneously, it is not vulnerable to the “man-in-the-middle” 
attack. If the hash value of the number contained in the Route 
Shift packet is equal to the stored hash value, the neighbors will 
be sure of the source of the packet. This method depends on the 
complexity of the hash function. MD5 [15] is such a good 
candidate that it is very difficult to determine the number from 
its hash value. 

IV. SOLUTIONS TO BROKEN COMMUNICATIONS 
The second type of overhead due to IP address change is 

the broken communications between the source and 
destination. We first provide the reasonable assumptions, and 
then describe the schemes for route rebuilding and 
communication states preservation. 

A. Assumptions 
We assume that the IP layer of the mobile node supports 

more than one IP address. Because we can bind at least two IP 
addresses with a NIC in most mainstream operating systems 
(e.g., Unix and Windows), we can assume that it is the same for 
mobile devices. 

With two IP addresses bound to the same interface, we 
specify that the new address as primary address and the old 
address as secondary address, and designate that the node use 
the primary address in the outgoing IP packets. Therefore, the 
node can still receive the packets destined for the old address 
for a short period, but the old address will not be used in the 
following new connections. 

In order not to trigger RERR packets sent from the 
neighbors of the changing node, we also need to extend the 
HELLO message to contain both the primary and secondary 
addresses for several intervals. However, to prevent the data 
packets destined for another node whose primary address is the 
same as its secondary address to be forwarded to it, the node 
must not reply to the Route Request (RREQ) packet for its old 
address. 

The second assumption is that the underlying links are bi-
directional. Because most MAC layers deployed in MANETs 
confirm to 802.11 standard, our assumption can be easily 
satisfied. 

B. Route rebuilding 
Suppose that node A is communicating with node B and 

node A changes its address (say, from x to y) during the 
communication. Although node A can still receive the packets 
destined for its old address of x for a short period with the 
mechanism proposed above, we expect that the following 
communications be based upon the new address of y. However, 
because the new address has not been seen before, a broadcast 
of RREQ5 from the other end is necessary to build the path 
towards it. 

                                                           
5 The RREQ may be combined with a name query message. 

To save the overhead of route rediscovery, we resort to a 
gratuitous Route Reply (RREP) packet. Because the path to 
node B may be still valid, node A can send a RREP packet with 
its new address to node B, which generates valid routing entries 
backwards to A in the routing tables in the nodes along the path 
because underlying links are bi-directional (our assumption). 
The routing entries towards the old address of x will expire 
eventually. 

C. Communication preservation 
The most important problem in handoff processing is the 

preservation of communication states at end points. This is 
because the checksum in the transport layer is computed based 
upon the source and destination IP addresses and the transport 
layer will check the corresponding header in the IP packet 
against the communication states before delivering the data to 
the upper layer. 

Suppose that node A is communicating with node B, and 
that node A changes its address from x to y. We adopt an NAT 
mechanism running on both nodes to preserve the 
communication states: 

(1) At node A, the new destination address of y in the 
incoming packets is modified to the old address of x prior to 
delivering it to the transport layer, and the old source address in 
outgoing packets is modified to the new address before sending 
it to the link layer; 

(2) At node B, the new source address of y in the incoming 
packets is modified to the old address of x prior to delivering it 
to the transport layer, and the old destination address in the 
outgoing packets is modified to the new address before sending 
it to the link layer. 

Although the packets from node A to node B can contain 
A’s old source address of x, which does not affect forwarding 
policy and the routing fabrics, we still perform NAT on it for 
purpose of correct reporting of Route Error packets if the path 
from A to B becomes invalid due to node mobility. 

Compared with the tunneling mechanism proposed in [8], 
our approach has the following advantages: 

(1) The overhead of a second IP header is saved. Although 
the length of the IP header is only 20 bytes in IPv4 or 40 bytes 
in IPv6 (without any options), it may lead to 
fragmentation/defragmentation that is time-consuming; 

(2) Because only one address in the IP header is modified in 
NAT, it will be faster when applied with the improved 
computation of IP checksum [16]; 

(3) The tunneling scheme brings a “DoS” problem as 
illustrated in Fig. 6. Suppose that node A has been 
communicating with node B before node A changes its address 
from x to y due to the address conflict with node C. An IP 
tunnel is built between B and A to redirect packets destined for 
A’s old address of x to its new address of y. If node C begins to 
communicate with B, the packets from B to C will also be 
forwarded to A through the tunnel, which means node C will 
never get any replies. Moreover, suppose that node B runs a 
TCP server application and listens at a well-known port. When 
node C initiates a connection from the same client port as node 



A, the connection between node A and node B will be reset due 
to the incorrect sequence number and TCP flags. Although the 
IP-in-IP tunnel scheme is simple, it cannot solve these 
problems. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6.  A “DoS” problem caused by IP tunneling 

To overcome these problems, our scheme extends NAT to 
utilize both port numbers and sequence numbers6 to distinguish 
different connections at node B, which can be explained with 
an example below. Suppose that node B is a web server, and 
that node A is fetching web pages from B when it changes its 
address from x to y. An NAT table, such as Table 1, is built at 
node B to store the required information. 

TABLE I.  NAT TABLE AT NODE B 

1 2 3 4 5 6 
Old 

remote 
address 

New 
remote 
address 

Local 
port 

Remote 
port 

Remote 
sequence 
number 

Next remote 
sequence 
number 

x y 80 2030 228743 22884312 

… … … … … … 

 
The procedure at node B works as the following: 

(1) When node B receives a packet, before it delivers the 
packet to the transport layer, it checks the columns 2, 3, and 4 
in the NAT table with the corresponding fields in the packet. If 
there is a match, there are three possibilities: a) the sequence 
number in the TCP header is equal to field 5 in the entry, which 
means the packet is either a retransmitted packet from node A 
or the first packet from node A since the entry was inserted into 
the NAT table. The new source address is modified to be the 
old address in field 1, and the next remote sequence number 
column is the sum of the remote sequence number and the 
payload length; b) if the sequence number in the packet is equal 
to field 6 in the entry, which means the packet is a new packet 
from node A, the new address in the packet is modified to be 
the old address, the value in field 6 is copied to filed 5, and 
field 6 is increased by the payload length; c) if the sequence 
number is not equal to either, which means the packet comes 
from node C that has x as its primary address, the packet is 
discarded silently. In all the other cases, the packet is delivered 
to the upper layer intact. 

                                                           
6  Only a TCP header has a sequence number. For a UDP header, the 

sequence number can be regarded as 0, which is meaningless. 

(2) When node B has a packet for the destination address of 
x, before the packet is sent to the link layer, node B compares 
columns 1, 3, 4 and 6 in the NAT table and the corresponding 
fields in the packet to find a match7. If there is such an entry, as 
the one in Table 1, the old destination address of x is changed 
to the new address of y, together with re-computation of the IP 
checksum; otherwise, the packet is sent intact. 

For UDP communications, because there is no sequence 
number in the UDP header, only the first four fields in the NAT 
table are used.  

Compared with node B, the processing at node A is 
simpler. Another NAT table, such as Table 2 is used. If the 
local port number in the packet is equal to one in the table, the 
old address is modified to the new address in the outgoing 
packets, and vice versa for incoming packets. 

TABLE II.  NAT TABLE AT NODE A 

Old address New address Port number 
x y 2030 
x y … 

 
Because node A changes its own address, it is trivial for it 

to insert the entry when it has a packet to send. The problem 
remains that how the entry is inserted at node B’s NAT table. A 
special message, Address Change Message (ACM), can be sent 
from node A to B indicating the creation of the NAT entry, 
which includes the old address, new address, protocol (UDP or 
TCP), local port, remote port, and sequence number (TCP 
only). The next remote sequence number in B’s NAT table is 
initialized as zero, and will be filled by the following TCP data 
packets. To save communication overhead further, the message 
can be combined with the gratuitous RREP packet mentioned 
in route rebuilding. 

The ACM packet must be sent before any data packets for 
node B. If node A is going to send a packet immediately after 
the address change, the data packet can be buffered before 
sending of the ACM packet. If node A has nothing to send 
immediately after address change, it waits for data packets 
from node B. Although node B has not been informed of A’s 
address change, according to our assumption, the route from 
node B to node A with the old address will be valid for a short 
period. Thus, the data packet can still arrive at node A, which 
triggers an ACM packet sent to B.  

To remove the entry, the TCP flag of FIN can be examined. 
For UDP entries, an expiration time can be associated with 
each of them. The entry is refreshed with UDP data packets 
and removed when it expires. The timeout method could also 
be utilized for TCP entries in case that the FIN packet is lost on 
transit or the other end shuts down abruptly. 

To prevent IP spoofing attacks, the ACM packet must be 
signed with node A’s private key. Therefore, the contents can 
be validated with A’s public key at node B. 

                                                           
7 The acknowledge number in the packet is compared with the next remote 

sequence number in the NAT table. 
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V. PERFORMANCE EVALUATION AND DISCUSSION 
This section analyzes the performance, limitations, other 

scenarios, and challenges of the handoff scheme. 

A. Performance analysis 
Suppose that there are n nodes in the MANET with l links. 

The average degree of a node is d (= l/n). Node A, which 
changes its IP address, has k connections with m nodes and on 
p active paths. The average length of the path is q. In a 
MANET where the mobile nodes are distributed evenly, we 
can assume that l >> n >> q, n >>d, and n > m; 

As analyzed before, there are two kinds of overheads: 

1) Overhead of broken routing fabrics 
Without the handoff scheme, the active paths going through 

node A will become invalid. As a result, at least one end of 
each path will initiate route rediscovery if the local repair 
mechanism is not utilized, which means there will be at least p 
times of flooding throughout the MANET. If no flooding 
optimization is adopted, the same packet will be forwarded by 
all the nodes once. Thus, there will be 2l packets for one 
flooding. As a result, there will be at least 2pl packets caused 
by broken routing fabrics. 

With the introduction of the Route Shift packet, which is a 
one-hop broadcast packet, only d packets are generated. 

2) Overhead of broken communications 
Without the handoff scheme, the m nodes that communicate 

with node A will perform route rediscovery. Therefore, 2ml 
packets will be generated to find the path towards node A. 

With the introduction of a gratuitous RREP packet and the 
ACM packet, only (m+k)q unicast packets are necessary to 
rebuild the route and insert NAT table entries. If RREP and 
ACM are combined, the number of packets is decreased to kq. 

B. Limitations 
If node A wants to communicate with node C as in Fig. 6, 

because C’s primary address of x has been bound with A’s NIC 
as the secondary address, all the packets from A to C will be 
regarded as local packets. Thus, they cannot communicate with 
each other until node A does not use the secondary address any 
longer. 

As discussed in the section above, to distinguish TCP 
connections from node A (that changes its address) and node C 
(that has the same primary address), node B utilizes both port 
numbers and sequence number in the TCP header. If node C 
connects to node B’s well-known port from the same port 
number after node A changes its address, the connection will 
be rejected. If the client port is dynamically allocated, as most 
application programs do, node A and node C may have 
different local ports. 

On the contrary, node B may connect to C’s well-known 
port after it has connected with A’s same port (for example, 
node B is browsing A and Cs’ homepages at the same time) 
and A has changed its address. If the client port is dynamically 
allocated, B will have different local port numbers, which will 
not be affected by our scheme. If node B binds the local port in 

the program, because the acknowledgement number in the 
connection with node A is usually different from the one in the 
connection with node C, the communication will not be 
affected either. However, if the acknowledgement number is 
the same, its NAT module will redirect the connection. 

With regard to UDP communication, because there is no 
sequence number in the UDP header, if nodes A and C use the 
same local client port number, the packets for C will be 
redirected to A. Furthermore, because there are no connection 
flags, UDP communication between nodes A and B will be 
forced to break if there has not been any data exchange for a 
long period after creation of the NAT entry. 

Another limitation is that if there is no data exchange 
between node A and B for a while immediately after A changes 
its address, the path from B to A will be invalid due to node 
mobility. Thus, a route rediscovery combined with name query 
from node B is inevitable. However, this problem can be 
solved if node A actively sends an ACM packet for each pre-
existing connection. 

C. Multiple address changes 
Our scheme can be applied to multiple address changes 

without any significant modifications. 

Suppose that the source node changes its IP address twice 
during the session, without loss of generality. After the first 
address change, the NAT tables have been built at both the 
source and destination to change the secondary address in the 
data packets to primary address and back forth. When the 
second address change happens, because the IP layer supports 
more than one IP address, the old primary address can be 
“pushed back” to be the second secondary address.  

The solution for broken routing fabrics can be utilized as 
usual. As to broken on-going communications, if the 
communication was initiated with the second secondary 
address (between the first and the second address change), new 
NAT entries will be created. However, for the communications 
initiated with the first secondary address (before the first 
address change), it must be associated with the up-to-date 
primary address. To solve this problem, noting that the primary 
address is mainly used for purpose of routing, we just need to 
modify the new address field of corresponding entries at both 
the source and destination. 

Thus, for all the existing NAT entries at the source node, 
when a second address change happens, a special flag can be 
set for each entry in addition to modification of new address 
field (Table 2). When an outgoing data packet has a matching 
local port number, an ACM message is sent to the destination, 
and the flag can be cleared. On receipt of this second ACM 
message, the destination modifies its NAT table to reflect the 
change. 

D. Address changes at both source and destination 
If both of the source and destination change their IP 

addresses simultaneously, because their old addresses are 
bound with them as secondary addresses, the ACM messages 
or data packets from either node with the old destination 



addresses will still reach the other end successfully within a 
short time interval. 

However, once the ACM message from the other end is 
received, a second NAT table is created, in addition to the first 
table caused by its own IP address change, as the tables 
illustrated both in Table 1 and in Table 2. Therefore, every data 
packet will undergo NAT twice8: 

(1) The outgoing data packets will be performed source 
NAT with Table 2, and then destination NAT with Table 1; 

(2) The incoming data packets will be performed source 
NAT with Table 1, and then destination NAT with Table 2. 

Thus, the communication states at both ends could be 
preserved in spite of both address changes. 

E. Challenge to key management  
Address handoff brings challenges to the key management 

in MANETs because most existing schemes assume that the IP 
address of a node is fixed, and thus a public/private key pair is 
bound with an IP address [17] [18]. When applied with 
autoconfiguration, their assumptions will be invalid for the 
following two reasons: 

(1) The addresses of the nodes are dynamically assigned 
when they join the MANET. 

(2) A node may change its address during its session in the 
MANET due to the reasons mentioned in Section 1. 

Suppose there is a CA in the MANET (either centralized or 
distributed). When the mobile node joins the network and is 
assigned with an IP address, it must register the binding of its 
public key with its current IP address with the CA. When it 
changes its address, it needs to register itself again with the CA 
to get a new certificate. However, since the binding of its 
previous address and its public key may not expire at the CA, 
its request will be rejected by the CA even it is really the owner 
of the public key, because it seems that two different nodes 
have the same public key in the eyes of the CA. 

The approach proposed in Section 3 will solve this 
problem: we can specify that the node generate another random 
number every time when it is assigned an IP address. If the 
length of the random number is long enough, two nodes will 
have different random numbers. During the process of 
registration, the hash value of the random number is included 
in the messages. When the node changes its address, the 
random value associated with the previous address is included 
in the registration message and encrypted with the other end’s 
public key or the secret key that they have agreed upon. Thus, 
the source of the messages can be identified. 

VI. PROTOTYPE IMPLEMENTATION 
A prototype of the handoff scheme is implemented to test 

the preservation of communication states in a LAN, as 
illustrated in Fig. 7. After a TCP connection was built between 
the client of a laptop and the server of a desktop, the client 
changes its IP address. Although the client is working in the 
                                                           

8 The order of source NAT and destination NAT is not important. 

infrastructure mode, it should be the same in the ad-hoc mode. 
The application is a simple string echo program, in which the 
server echoes the string typed at the client’s terminal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  The testbed of handoff scheme 

The handoff scheme is implemented as hooks by means of 
netfilter [19]. The NAT processing of outgoing packets is 
performed at NF_IP_LOCAL_OUT, while the NAT processing 
of incoming packets is performed at NF_IP_PRE_ROUTING. 

The code illustrated in Fig. 8 shows the procedure of NAT 
processing of outgoing packets at the client. The processing of 
incoming packets is similar. To simplify the test, we did not 
use the aforementioned NAT tables in the prototype because 
there is only one TCP connection. In a real implementation, a 
hash table may be utilized to expedite lookup of NAT tables. 
Other optimizations are also desirable. For example, IP 
addresses and port numbers should be stored in network order, 
and the fast computation of IP checksum should be used. 

#define OLD_ADDRESS 0xC0A8019B  // 192.168.1.155 
#define NEW_ADDRESS 0xC0A8018C // 192.168.1.140 
static unsigned int handoff_NAT_out(unsigned int hook, struct sk_buff 
**pskb, const struct net_device *indev, const struct net_device *outdev, int 
(*okfn)(struct sk_buff *) 
{ 
   struct tcphdr* th; 
   // Whether we should perform NAT or not 
   if ((*pskb)->nh.iph->saddr == htonl(OLD_ADDRESS) && (*pskb)-
>nh.iph->protocol == 6)  
   { 
      th = (struct tcphdr*)((char*)(*pskb)->nh.iph + (*pskb)->nh.iph->ihl*4); 
      if (th->dest == htons(10000)) 
      { 
         // Change (source) address 
         (*pskb)->nh.iph->saddr = (DWORD)htonl(NEW_ADDRESS); 
         // Recompute IP checksum 
         (*pskb)->nh.iph->check = 0; 
         (*pskb)->nh.iph->check = in_checksum((WORD*)((*pskb)->nh.iph),    
(*pskb)->nh.iph->ihl*4); 
      } 
   } 
   return NF_ACCEPT; 
} 

Figure 8.  NAT processing of outgoing packets at changing node 

The test is done in the following steps: 

Access Point

Server (Red Hat Linux 7.3) 
192.168.1.173 

Client (Red Hat Linux 9.0) 
192.168.1.155→192.168.1.
140



(1) The client initiates a connection to the server; 

(2) After a while, the IP address of the client is changed 
from 192.168.1.155 to 192.168.1.140 at the wireless NIC 
(eth1); 

(3) The old address of 192.168.1.155 is bound with the 
client’s wireless NIC as an alias (eth1:0)9;  

(4) Install hooks at both the client and server; 

(5) Continue typing strings at the client’s terminal, which 
are shown on the server’s terminal. 

We used ethereal running on the client to capture all the 
TCP packets during the test, which are shown in Fig. 9. In Fig. 
9, the first three lines are the control packets for TCP 
handshaking procedure between the client (192.168.1.155) and 
the server (192.168.1.173). The lines 4-7 are the TCP data 
packets before the client’s address change. Starting from line 8, 
the client’s address is changed from 192.168.1.155 to 
192.168.1.140, so the source address of all the following 
outgoing packets is the new address. However, for the 
incoming data packets, because the new destination address has 
been modified by the hook, so the destination address of the 
captured incoming packets is still shown as the old address. 
With ethereal running on the server side, the outgoing packets’ 
destination address field still contains the new address of the 
client. 

Figure 9.  The captured TCP packets during the test 

VII. CONCLUSION 
With the deployment of autoconfiguration, global 

connectivity, and hierarchical addressing scheme (in large scale 
networks), mobile nodes in MANETs may change their IP 
addresses more frequently than fixed hosts in hardwired 
networks. However, the issue of address change has not been 
carefully studied. Based upon the analysis of the overhead 
caused by address change, we introduced the Route Shift 
packet, Address Change Message, and NAT scheme to solve 
the problem. Thus, the overhead caused by broken routing 
fabrics is saved. Moreover, the both end can continue their 
TCP/UDP communications, unaware of the address change. 
The method could be applied to the scenario that the node 
changes its IP address more that once, and that both the source 
                                                           

9 This step is necessary because otherwise the outgoing packets will be 
dropped at the client’s IP layer. 

and destination change their addresses simultaneously, without 
any significant modifications.  

There is still much work ahead. For example, only a 
quantitative analysis was presented in the paper. The 
simulation of the schemes needs more research effort. Another 
aspect is that the prototype implementation only aims at one 
node’s address change during one connection. The tests in the 
scenarios of more connections and more address changes have 
not been conducted yet, which will be our future work. 
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