
IP Address Handoff in the MANET

Hongbo Zhou and Matt W. Mutka
Dept. of Computer Science & Engineering

Michigan State University
East Lansing, Michigan, USA

{zhouhon1, mutka}@cse.msu.edu

Lionel M. Ni
Dept. of Computer Science

Hong Kong University of Science & Technology
Hong Kong SAR, China

ni@cs.ust.hk

Abstract—When compared with a fixed host that is connected to
a hardwired network, a mobile node in the MANET may change
its IP address more frequently due to the deployment of
autoconfiguration, global connectivity, and hierarchical
addressing schemes. When an IP address changes, the
performance of unicast routing protocols and real-time
communications may degrade, and privacy may be compromised
within the MANET. Although there have been some
autoconfiguration algorithms proposed for the assignment of
unique IP addresses to mobile nodes, the overhead resulting from
address changes has not been carefully examined. Based on
studies of the overhead caused by address change, an IP address
handoff solution, which extends the unicast routing protocol and
Network Address Translation (NAT) scheme, is proposed in the
paper. The proposed approach is able to offset the overhead of
broken routing fabrics and on-going communications, which is
supported by our analysis and a prototype implementation.

Keywords-handoff; IP address allocation; MANET; security

I. INTRODUCTION
A Mobile Ad-hoc Network (MANET) is a temporary

wireless network composed of mobile nodes without an
infrastructure. A MANET may be suitable for networks within
airports, meeting rooms, and open spaces due to both
economical and technological feasibilities. Because the
MANET is based upon IP protocol suites, a node in the
MANET cannot take part in unicast communications until it is
configured with a free IP address.

Although it is simple to set IP addresses of mobile nodes in
a small scale MANET, it becomes desirable for the procedure
to be automatic for a large scale open MANET where mobile
nodes are free to join and leave, which has motivated research
efforts into the study of autoconfiguration in MANETs [1]-[8].

Another problem associated with IP address assignment of
a mobile node is that the IP address may change during its
session in the MANET. IP address change is not a serious
problem in hardwired networks because the IP address of a
host is either statically configured or dynamically allocated by
a DHCP server. It usually does not change its IP address during
a session unless it reboots. However, because the nodes in the
MANET are free to move arbitrarily, IP address change
happens more frequently when applied with autoconfiguration,
global connectivity, and hierarchical addressing schemes.

There are several scenarios in which a mobile node will
change its IP address:

(1) Merger of two partitions of a network

If some mobile nodes in the MANET move out of the
transmission range of the other nodes, the network becomes
partitioned as illustrated in Fig. 1(a). Because these nodes may
not be aware of the partition, they may still use the previous
allocated addresses. If the IP address of a node (say node A) in
one partition is allocated to the new node (say node B) in the
other partition, address conflict occurs when these two
partitions become connected, as illustrated in Fig.1 (b). One
example is when some attendants leave a meeting room for a
short period and then return during a presentation session. The
prophet address allocation is insensitive to this scenario [6] [7],
while the nodes in one partition may need to change their
addresses with DDHCP [5].

Figure 1. A network is partitioned and then merged later

(2) Merger of two independent MANETs

The second scenario is that two independently configured
MANETs merge. Because these two networks are
autoconfigured separately, there may be some duplicate
addresses in both networks, such as node A in MANET 1 and
node B in MANET 2 in Fig. 2. Thus, one needs to change its
address due to the merger.

Figure 2. Merger of two independent MANETs

(3) Merger of a MANET with a LAN

The work was supported in part by NSF Grants No. 0334035, 0098017,
9911074, NIH Grant No. EB002238-01, Hong Kong RGC Grants
HKUST6161/03E and DAG02/03.EG02, and a grant from Microsoft
Research.

A

Partition 1

Partition 2
B

(b)

A

Partition 1

Partition 2

(a)

A

MANET 1

B

MANET 2

C

The third scenario is that a MANET merges with a LAN
that has an “ad-hoc” mode Access Point (AP)1. The mobile
nodes (such as node R in Fig. 3) that are within transmission
range of the AP of the LAN may want to use the configuration
information (e.g., a free IP address in the LAN and the default
router) broadcast by the AP to configure itself and function as a
relay node. As a result, the MANET becomes connected to the
Internet [9] [10]. Furthermore, if the MANET and the LAN use
the same private address range, there may be duplicate
addresses in both the MANET and LAN, such as node A and
node B in Fig. 3. Because the hardwired host in the LAN may
not be willing to release its address, the node in the MANET
will have to change its address.

Figure 3. The merger of a MANET and a WLAN

(4) A MANET with a hierarchical addressing scheme

In the network where a hierarchical addressing scheme is
deployed [11], the mobile nodes are divided into different
clusters, each of which has a unique subnet address. When a
mobile node (such as node A in Fig. 4) moves from one cluster
to another cluster, it will change its address to one with the
corresponding subnet address.

Figure 4. A MANET with hierarchical addressing scheme

Although many autoconfiguration algorithms for MANETs
have been proposed to allocate a mobile node a free IP address
on its arrival in the MANET without an address conflict, few
consider the issue of IP address change. To the best of our
knowledge, this paper is the first effort to present a systematic
solution for IP address handoff in the MANET.

The paper is structured as follows. Section 2 discusses the
overhead caused by IP address change of a mobile node during

1 For example, the AP from Ericsson is able to support both ad hoc and
infrastructure modes simultaneously.

its session in the MANET. Some related work on handoff
schemes is introduced in Section 2 as well. However, none of
these solutions can solve the problem systematically and
satisfactorily. The solutions to remedy the overhead due to
broken routing fabrics and on-going communications are
presented in Section 3 and Section 4, respectively. Section 5
gives analytical evaluation of the performance and discusses its
limitations, other scenarios and challenges to key management
in MANETs. A prototype implementation and test are
introduced in Section 6. Section 7 concludes the paper.

II. ISSUES AND RELATED WORK
This section discusses the motivation for IP address handoff

and introduces related work.

A. Motivation
There are two major issues resulting from IP address

change of a mobile node in the MANET:

1) Broken routing fabrics
Unlike the hosts connected to the edge networks, all the

nodes in a large-scale MANET have to function as routers (i.e.,
multi-hop routing). If a node changes its IP address, all the
routing entries that point to the node as the downstream next
hop will be obsolete.

Fig. 5 gives an example of a simple MANET composed of
5 nodes in a chain with AODV [12]2 as the routing protocol.
Suppose that the IP address of node C is x. The routing tables at
node B and node D are also shown in Fig. 5. When node C
changes its address from x to y, all the routing entries in node B
and D will be invalid.

Figure 5. A MANET of 5 nodes in a chain

According to the specification of AODV, after two HELLO
message intervals (i.e., 2 seconds), nodes B and D will detect
downstream link breakage. If the destination of data packets is
within the distance of certain hops, nodes B and D may initiate
scoped broadcasts to rebuild the path between B and D;
otherwise, they will send a Route Error (RERR) packet back to
nodes A and E respectively, which triggers flooding of route
rediscovery packets.

In a more complicated topology, node C will have many
neighbors and will be on many active paths. Thus, much
overhead will incur for route maintenance.

2) Broken on-going communications
While referring to Fig. 5, suppose that node A is

communicating with node E. If node E changes its address

2 The routing protocols that support multiple paths, such as DSR, are
insensitive to the IP address change of a node along the path.

MANET

A

Subnet 1

Subnet 2
Subnet 3

AP

MANET

R
Internet

A

B

A B C (x) D E (u)

Dest Next

D C (x)

E C (x)

Dest Next

B C (x)

A C (x)

from u to v, the on-going communications between A and E
will be broken, which does not meet the requirement of real-
time multimedia applications.

Because the address of u will not exist any longer (if the
address change is not caused by address conflict), the local
repair mechanism of AODV will fail eventually. As a result,
the overhead of route rediscovery is inevitable. Even if node A
initiates route rediscovery, it will not find the destination,
unless the DNS scheme proposed in [13] is combined with the
reactive routing protocol.

An ad-hoc approach is that node E resumes the connection
actively. However, because node E may be a server of an
application (e.g., the user of node E is running a FTP server so
that other participants of the meeting can download documents
from him), it is not responsible for the initiation of
communication. Furthermore, the application may run in the
background or the user of node E may not be aware of the
broken communication. Thus, we need a better solution.

IP address change may compromise privacy as well. One
example is the case of the merger of two MANETs. Suppose
that node C is running a VoIP application with node B in
MANET 2, as illustrated in Fig. 2. Because node B has the
same address as node A in MANET 1, node B will change its
address after the merger (for example, MANET 2 has a smaller
NID [6] [7]). If node A keeps its address, the route
maintenance procedure will rebuild the path between node C
and node A. Thus, the voice data packets destined for node B
will be redirected to node A. Suppose that node A is also
running the VoIP application simultaneously, and that they use
the same UDP ports. If the voice data packets are not
encrypted, node C will talk with node A for a while until it
realizes that it is speaking with a wrong party in the middle of
the communication.

B. Related work
Several schemes have been proposed for IP address handoff

in hardwired networks and MANETs. However, none of these
approaches can solve the issue in the four aforementioned
scenarios systematically and satisfactorily.

1) Mobile IP
Mobile IP intends to provide basic support for mobile hosts

in a LAN [14]. According to the scheme, a mobile host is
assigned a permanent home address that is bound with its home
agent. When it becomes connected to a foreign network, it
receives a temporary care-of address and other information
(e.g., the subnet mask and default router) from the foreign
agent. The mobile host registers its current care-of address at
its home agent, which then builds a tunnel between itself and
the foreign agent. When another host initiates communication
with the mobile host, it usually gets the mobile host’s home
address from DNS query and sends the packets to the home
address. The packets will be then forwarded to the mobile
host’s care-of address by the home agent through the IP tunnel.

Mobile IP is efficient for IP address handoff in a LAN that
has an infrastructure. However, because the nodes in the
MANET are mobile and instable, none of them can be

designated as the home agent or foreign agent for another node.
Thus, it cannot be applied in the MANET.

2) Tunneling mechanism
In addition to autoconfiguration in the MANET, the scheme

in [8] proposed a solution for the maintenance of
communication states after address changes. The node (say
node A) that changes its IP address notifies the other end (say
node B) with a special Address Error (AERR) message. From
then on, they communicate with each other through an IP-in-IP
tunnel: the outer IP header contains the A’s new address, while
the inner IP header contains A’s old address. Unlike the IP
tunneling in Mobile IP, the communicating nodes A and B are
also the end points of the tunnel: the source encapsulates the
packet that is decapsulated at the destination.

This approach is able to preserve communication states at
both ends, but neglects the overhead caused by broken routing
fabrics. Furthermore, it brings a “DoS” problem that will be
discussed in Section 4.

III. SOLUTIONS TO BROKEN ROUTING FABRICS
Unlike the link breakage caused by node movement, the

overhead of broken routing fabrics is due to IP address change
of a node. Because the node may still be within the
transmission range of its neighbors, and it is aware of the
address change, a simple solution can be implemented to
remedy this kind of overhead3.

We assume AODV as the routing protocol. Suppose that
node C changes its address from x to y, as illustrated in Fig. 5.
Node C can notify all its neighbors (such as nodes B and E) of
the address change. A new routing control packet, namely
Route Shift packet, can be introduced into AODV scheme. The
packet is a one-hop broadcast packet that contains the source’s
old address and new address. On receipt of the packet, the
neighbors change the next hop from x to y in all the routing
entries with node C as the next hop.

However, this solution is vulnerable to IP spoofing attacks,
which are difficult to detect and prevent in MANETs that have
no infrastructure. With the introduction of the Route Shift
packet, a malicious node can impersonate another node and
broadcast the packet to undermine the routing fabrics. We need
a way to identify the source of the packet.

One solution is to use a cryptographic method such as a
digital signature, in which node C signs the Route Shift packet
with its private key. All its neighbors contact the Certificate
Authority (CA) to get the certificate for node C’s public key
and validate the Route Shift packet. Although this method can
defeat IP spoofing attacks, it brings delay and communication
overhead.

Our solution is that node C chooses a random number for
its current address x, and puts the hash value of the number in
the Route Request packet and Route Reply packet4 in transit,
and periodical HELLO messages. All its neighbors store the

3 If the address change happens with link breakage simultaneously, the
broken routing fabrics will be repaired with route maintenance.

4 These routing control packets are not destined for node C itself.

hash value in either their neighbor tables or routing tables.
When node A changes its address, it puts the random number
in the Route Shift packet. Because the packet is a one-hop
broadcast packet, which will be received by its neighbors
simultaneously, it is not vulnerable to the “man-in-the-middle”
attack. If the hash value of the number contained in the Route
Shift packet is equal to the stored hash value, the neighbors will
be sure of the source of the packet. This method depends on the
complexity of the hash function. MD5 [15] is such a good
candidate that it is very difficult to determine the number from
its hash value.

IV. SOLUTIONS TO BROKEN COMMUNICATIONS
The second type of overhead due to IP address change is

the broken communications between the source and
destination. We first provide the reasonable assumptions, and
then describe the schemes for route rebuilding and
communication states preservation.

A. Assumptions
We assume that the IP layer of the mobile node supports

more than one IP address. Because we can bind at least two IP
addresses with a NIC in most mainstream operating systems
(e.g., Unix and Windows), we can assume that it is the same for
mobile devices.

With two IP addresses bound to the same interface, we
specify that the new address as primary address and the old
address as secondary address, and designate that the node use
the primary address in the outgoing IP packets. Therefore, the
node can still receive the packets destined for the old address
for a short period, but the old address will not be used in the
following new connections.

In order not to trigger RERR packets sent from the
neighbors of the changing node, we also need to extend the
HELLO message to contain both the primary and secondary
addresses for several intervals. However, to prevent the data
packets destined for another node whose primary address is the
same as its secondary address to be forwarded to it, the node
must not reply to the Route Request (RREQ) packet for its old
address.

The second assumption is that the underlying links are bi-
directional. Because most MAC layers deployed in MANETs
confirm to 802.11 standard, our assumption can be easily
satisfied.

B. Route rebuilding
Suppose that node A is communicating with node B and

node A changes its address (say, from x to y) during the
communication. Although node A can still receive the packets
destined for its old address of x for a short period with the
mechanism proposed above, we expect that the following
communications be based upon the new address of y. However,
because the new address has not been seen before, a broadcast
of RREQ5 from the other end is necessary to build the path
towards it.

5 The RREQ may be combined with a name query message.

To save the overhead of route rediscovery, we resort to a
gratuitous Route Reply (RREP) packet. Because the path to
node B may be still valid, node A can send a RREP packet with
its new address to node B, which generates valid routing entries
backwards to A in the routing tables in the nodes along the path
because underlying links are bi-directional (our assumption).
The routing entries towards the old address of x will expire
eventually.

C. Communication preservation
The most important problem in handoff processing is the

preservation of communication states at end points. This is
because the checksum in the transport layer is computed based
upon the source and destination IP addresses and the transport
layer will check the corresponding header in the IP packet
against the communication states before delivering the data to
the upper layer.

Suppose that node A is communicating with node B, and
that node A changes its address from x to y. We adopt an NAT
mechanism running on both nodes to preserve the
communication states:

(1) At node A, the new destination address of y in the
incoming packets is modified to the old address of x prior to
delivering it to the transport layer, and the old source address in
outgoing packets is modified to the new address before sending
it to the link layer;

(2) At node B, the new source address of y in the incoming
packets is modified to the old address of x prior to delivering it
to the transport layer, and the old destination address in the
outgoing packets is modified to the new address before sending
it to the link layer.

Although the packets from node A to node B can contain
A’s old source address of x, which does not affect forwarding
policy and the routing fabrics, we still perform NAT on it for
purpose of correct reporting of Route Error packets if the path
from A to B becomes invalid due to node mobility.

Compared with the tunneling mechanism proposed in [8],
our approach has the following advantages:

(1) The overhead of a second IP header is saved. Although
the length of the IP header is only 20 bytes in IPv4 or 40 bytes
in IPv6 (without any options), it may lead to
fragmentation/defragmentation that is time-consuming;

(2) Because only one address in the IP header is modified in
NAT, it will be faster when applied with the improved
computation of IP checksum [16];

(3) The tunneling scheme brings a “DoS” problem as
illustrated in Fig. 6. Suppose that node A has been
communicating with node B before node A changes its address
from x to y due to the address conflict with node C. An IP
tunnel is built between B and A to redirect packets destined for
A’s old address of x to its new address of y. If node C begins to
communicate with B, the packets from B to C will also be
forwarded to A through the tunnel, which means node C will
never get any replies. Moreover, suppose that node B runs a
TCP server application and listens at a well-known port. When
node C initiates a connection from the same client port as node

A, the connection between node A and node B will be reset due
to the incorrect sequence number and TCP flags. Although the
IP-in-IP tunnel scheme is simple, it cannot solve these
problems.

Figure 6. A “DoS” problem caused by IP tunneling

To overcome these problems, our scheme extends NAT to
utilize both port numbers and sequence numbers6 to distinguish
different connections at node B, which can be explained with
an example below. Suppose that node B is a web server, and
that node A is fetching web pages from B when it changes its
address from x to y. An NAT table, such as Table 1, is built at
node B to store the required information.

TABLE I. NAT TABLE AT NODE B

1 2 3 4 5 6
Old

remote
address

New
remote
address

Local
port

Remote
port

Remote
sequence
number

Next remote
sequence
number

x y 80 2030 228743 22884312

… … … … … …

The procedure at node B works as the following:

(1) When node B receives a packet, before it delivers the
packet to the transport layer, it checks the columns 2, 3, and 4
in the NAT table with the corresponding fields in the packet. If
there is a match, there are three possibilities: a) the sequence
number in the TCP header is equal to field 5 in the entry, which
means the packet is either a retransmitted packet from node A
or the first packet from node A since the entry was inserted into
the NAT table. The new source address is modified to be the
old address in field 1, and the next remote sequence number
column is the sum of the remote sequence number and the
payload length; b) if the sequence number in the packet is equal
to field 6 in the entry, which means the packet is a new packet
from node A, the new address in the packet is modified to be
the old address, the value in field 6 is copied to filed 5, and
field 6 is increased by the payload length; c) if the sequence
number is not equal to either, which means the packet comes
from node C that has x as its primary address, the packet is
discarded silently. In all the other cases, the packet is delivered
to the upper layer intact.

6 Only a TCP header has a sequence number. For a UDP header, the

sequence number can be regarded as 0, which is meaningless.

(2) When node B has a packet for the destination address of
x, before the packet is sent to the link layer, node B compares
columns 1, 3, 4 and 6 in the NAT table and the corresponding
fields in the packet to find a match7. If there is such an entry, as
the one in Table 1, the old destination address of x is changed
to the new address of y, together with re-computation of the IP
checksum; otherwise, the packet is sent intact.

For UDP communications, because there is no sequence
number in the UDP header, only the first four fields in the NAT
table are used.

Compared with node B, the processing at node A is
simpler. Another NAT table, such as Table 2 is used. If the
local port number in the packet is equal to one in the table, the
old address is modified to the new address in the outgoing
packets, and vice versa for incoming packets.

TABLE II. NAT TABLE AT NODE A

Old address New address Port number
x y 2030
x y …

Because node A changes its own address, it is trivial for it

to insert the entry when it has a packet to send. The problem
remains that how the entry is inserted at node B’s NAT table. A
special message, Address Change Message (ACM), can be sent
from node A to B indicating the creation of the NAT entry,
which includes the old address, new address, protocol (UDP or
TCP), local port, remote port, and sequence number (TCP
only). The next remote sequence number in B’s NAT table is
initialized as zero, and will be filled by the following TCP data
packets. To save communication overhead further, the message
can be combined with the gratuitous RREP packet mentioned
in route rebuilding.

The ACM packet must be sent before any data packets for
node B. If node A is going to send a packet immediately after
the address change, the data packet can be buffered before
sending of the ACM packet. If node A has nothing to send
immediately after address change, it waits for data packets
from node B. Although node B has not been informed of A’s
address change, according to our assumption, the route from
node B to node A with the old address will be valid for a short
period. Thus, the data packet can still arrive at node A, which
triggers an ACM packet sent to B.

To remove the entry, the TCP flag of FIN can be examined.
For UDP entries, an expiration time can be associated with
each of them. The entry is refreshed with UDP data packets
and removed when it expires. The timeout method could also
be utilized for TCP entries in case that the FIN packet is lost on
transit or the other end shuts down abruptly.

To prevent IP spoofing attacks, the ACM packet must be
signed with node A’s private key. Therefore, the contents can
be validated with A’s public key at node B.

7 The acknowledge number in the packet is compared with the next remote

sequence number in the NAT table.

MANET

A (x→y)

B C (x)

V. PERFORMANCE EVALUATION AND DISCUSSION
This section analyzes the performance, limitations, other

scenarios, and challenges of the handoff scheme.

A. Performance analysis
Suppose that there are n nodes in the MANET with l links.

The average degree of a node is d (= l/n). Node A, which
changes its IP address, has k connections with m nodes and on
p active paths. The average length of the path is q. In a
MANET where the mobile nodes are distributed evenly, we
can assume that l >> n >> q, n >>d, and n > m;

As analyzed before, there are two kinds of overheads:

1) Overhead of broken routing fabrics
Without the handoff scheme, the active paths going through

node A will become invalid. As a result, at least one end of
each path will initiate route rediscovery if the local repair
mechanism is not utilized, which means there will be at least p
times of flooding throughout the MANET. If no flooding
optimization is adopted, the same packet will be forwarded by
all the nodes once. Thus, there will be 2l packets for one
flooding. As a result, there will be at least 2pl packets caused
by broken routing fabrics.

With the introduction of the Route Shift packet, which is a
one-hop broadcast packet, only d packets are generated.

2) Overhead of broken communications
Without the handoff scheme, the m nodes that communicate

with node A will perform route rediscovery. Therefore, 2ml
packets will be generated to find the path towards node A.

With the introduction of a gratuitous RREP packet and the
ACM packet, only (m+k)q unicast packets are necessary to
rebuild the route and insert NAT table entries. If RREP and
ACM are combined, the number of packets is decreased to kq.

B. Limitations
If node A wants to communicate with node C as in Fig. 6,

because C’s primary address of x has been bound with A’s NIC
as the secondary address, all the packets from A to C will be
regarded as local packets. Thus, they cannot communicate with
each other until node A does not use the secondary address any
longer.

As discussed in the section above, to distinguish TCP
connections from node A (that changes its address) and node C
(that has the same primary address), node B utilizes both port
numbers and sequence number in the TCP header. If node C
connects to node B’s well-known port from the same port
number after node A changes its address, the connection will
be rejected. If the client port is dynamically allocated, as most
application programs do, node A and node C may have
different local ports.

On the contrary, node B may connect to C’s well-known
port after it has connected with A’s same port (for example,
node B is browsing A and Cs’ homepages at the same time)
and A has changed its address. If the client port is dynamically
allocated, B will have different local port numbers, which will
not be affected by our scheme. If node B binds the local port in

the program, because the acknowledgement number in the
connection with node A is usually different from the one in the
connection with node C, the communication will not be
affected either. However, if the acknowledgement number is
the same, its NAT module will redirect the connection.

With regard to UDP communication, because there is no
sequence number in the UDP header, if nodes A and C use the
same local client port number, the packets for C will be
redirected to A. Furthermore, because there are no connection
flags, UDP communication between nodes A and B will be
forced to break if there has not been any data exchange for a
long period after creation of the NAT entry.

Another limitation is that if there is no data exchange
between node A and B for a while immediately after A changes
its address, the path from B to A will be invalid due to node
mobility. Thus, a route rediscovery combined with name query
from node B is inevitable. However, this problem can be
solved if node A actively sends an ACM packet for each pre-
existing connection.

C. Multiple address changes
Our scheme can be applied to multiple address changes

without any significant modifications.

Suppose that the source node changes its IP address twice
during the session, without loss of generality. After the first
address change, the NAT tables have been built at both the
source and destination to change the secondary address in the
data packets to primary address and back forth. When the
second address change happens, because the IP layer supports
more than one IP address, the old primary address can be
“pushed back” to be the second secondary address.

The solution for broken routing fabrics can be utilized as
usual. As to broken on-going communications, if the
communication was initiated with the second secondary
address (between the first and the second address change), new
NAT entries will be created. However, for the communications
initiated with the first secondary address (before the first
address change), it must be associated with the up-to-date
primary address. To solve this problem, noting that the primary
address is mainly used for purpose of routing, we just need to
modify the new address field of corresponding entries at both
the source and destination.

Thus, for all the existing NAT entries at the source node,
when a second address change happens, a special flag can be
set for each entry in addition to modification of new address
field (Table 2). When an outgoing data packet has a matching
local port number, an ACM message is sent to the destination,
and the flag can be cleared. On receipt of this second ACM
message, the destination modifies its NAT table to reflect the
change.

D. Address changes at both source and destination
If both of the source and destination change their IP

addresses simultaneously, because their old addresses are
bound with them as secondary addresses, the ACM messages
or data packets from either node with the old destination

addresses will still reach the other end successfully within a
short time interval.

However, once the ACM message from the other end is
received, a second NAT table is created, in addition to the first
table caused by its own IP address change, as the tables
illustrated both in Table 1 and in Table 2. Therefore, every data
packet will undergo NAT twice8:

(1) The outgoing data packets will be performed source
NAT with Table 2, and then destination NAT with Table 1;

(2) The incoming data packets will be performed source
NAT with Table 1, and then destination NAT with Table 2.

Thus, the communication states at both ends could be
preserved in spite of both address changes.

E. Challenge to key management
Address handoff brings challenges to the key management

in MANETs because most existing schemes assume that the IP
address of a node is fixed, and thus a public/private key pair is
bound with an IP address [17] [18]. When applied with
autoconfiguration, their assumptions will be invalid for the
following two reasons:

(1) The addresses of the nodes are dynamically assigned
when they join the MANET.

(2) A node may change its address during its session in the
MANET due to the reasons mentioned in Section 1.

Suppose there is a CA in the MANET (either centralized or
distributed). When the mobile node joins the network and is
assigned with an IP address, it must register the binding of its
public key with its current IP address with the CA. When it
changes its address, it needs to register itself again with the CA
to get a new certificate. However, since the binding of its
previous address and its public key may not expire at the CA,
its request will be rejected by the CA even it is really the owner
of the public key, because it seems that two different nodes
have the same public key in the eyes of the CA.

The approach proposed in Section 3 will solve this
problem: we can specify that the node generate another random
number every time when it is assigned an IP address. If the
length of the random number is long enough, two nodes will
have different random numbers. During the process of
registration, the hash value of the random number is included
in the messages. When the node changes its address, the
random value associated with the previous address is included
in the registration message and encrypted with the other end’s
public key or the secret key that they have agreed upon. Thus,
the source of the messages can be identified.

VI. PROTOTYPE IMPLEMENTATION
A prototype of the handoff scheme is implemented to test

the preservation of communication states in a LAN, as
illustrated in Fig. 7. After a TCP connection was built between
the client of a laptop and the server of a desktop, the client
changes its IP address. Although the client is working in the

8 The order of source NAT and destination NAT is not important.

infrastructure mode, it should be the same in the ad-hoc mode.
The application is a simple string echo program, in which the
server echoes the string typed at the client’s terminal.

Figure 7. The testbed of handoff scheme

The handoff scheme is implemented as hooks by means of
netfilter [19]. The NAT processing of outgoing packets is
performed at NF_IP_LOCAL_OUT, while the NAT processing
of incoming packets is performed at NF_IP_PRE_ROUTING.

The code illustrated in Fig. 8 shows the procedure of NAT
processing of outgoing packets at the client. The processing of
incoming packets is similar. To simplify the test, we did not
use the aforementioned NAT tables in the prototype because
there is only one TCP connection. In a real implementation, a
hash table may be utilized to expedite lookup of NAT tables.
Other optimizations are also desirable. For example, IP
addresses and port numbers should be stored in network order,
and the fast computation of IP checksum should be used.

#define OLD_ADDRESS 0xC0A8019B // 192.168.1.155
#define NEW_ADDRESS 0xC0A8018C // 192.168.1.140
static unsigned int handoff_NAT_out(unsigned int hook, struct sk_buff
**pskb, const struct net_device *indev, const struct net_device *outdev, int
(*okfn)(struct sk_buff *)
{
 struct tcphdr* th;
 // Whether we should perform NAT or not
 if ((*pskb)->nh.iph->saddr == htonl(OLD_ADDRESS) && (*pskb)-
>nh.iph->protocol == 6)
 {
 th = (struct tcphdr*)((char*)(*pskb)->nh.iph + (*pskb)->nh.iph->ihl*4);
 if (th->dest == htons(10000))
 {
 // Change (source) address
 (*pskb)->nh.iph->saddr = (DWORD)htonl(NEW_ADDRESS);
 // Recompute IP checksum
 (*pskb)->nh.iph->check = 0;
 (*pskb)->nh.iph->check = in_checksum((WORD*)((*pskb)->nh.iph),
(*pskb)->nh.iph->ihl*4);
 }
 }
 return NF_ACCEPT;
}

Figure 8. NAT processing of outgoing packets at changing node

The test is done in the following steps:

Access Point

Server (Red Hat Linux 7.3)
192.168.1.173

Client (Red Hat Linux 9.0)
192.168.1.155→192.168.1.
140

(1) The client initiates a connection to the server;

(2) After a while, the IP address of the client is changed
from 192.168.1.155 to 192.168.1.140 at the wireless NIC
(eth1);

(3) The old address of 192.168.1.155 is bound with the
client’s wireless NIC as an alias (eth1:0)9;

(4) Install hooks at both the client and server;

(5) Continue typing strings at the client’s terminal, which
are shown on the server’s terminal.

We used ethereal running on the client to capture all the
TCP packets during the test, which are shown in Fig. 9. In Fig.
9, the first three lines are the control packets for TCP
handshaking procedure between the client (192.168.1.155) and
the server (192.168.1.173). The lines 4-7 are the TCP data
packets before the client’s address change. Starting from line 8,
the client’s address is changed from 192.168.1.155 to
192.168.1.140, so the source address of all the following
outgoing packets is the new address. However, for the
incoming data packets, because the new destination address has
been modified by the hook, so the destination address of the
captured incoming packets is still shown as the old address.
With ethereal running on the server side, the outgoing packets’
destination address field still contains the new address of the
client.

Figure 9. The captured TCP packets during the test

VII. CONCLUSION
With the deployment of autoconfiguration, global

connectivity, and hierarchical addressing scheme (in large scale
networks), mobile nodes in MANETs may change their IP
addresses more frequently than fixed hosts in hardwired
networks. However, the issue of address change has not been
carefully studied. Based upon the analysis of the overhead
caused by address change, we introduced the Route Shift
packet, Address Change Message, and NAT scheme to solve
the problem. Thus, the overhead caused by broken routing
fabrics is saved. Moreover, the both end can continue their
TCP/UDP communications, unaware of the address change.
The method could be applied to the scenario that the node
changes its IP address more that once, and that both the source

9 This step is necessary because otherwise the outgoing packets will be
dropped at the client’s IP layer.

and destination change their addresses simultaneously, without
any significant modifications.

There is still much work ahead. For example, only a
quantitative analysis was presented in the paper. The
simulation of the schemes needs more research effort. Another
aspect is that the prototype implementation only aims at one
node’s address change during one connection. The tests in the
scenarios of more connections and more address changes have
not been conducted yet, which will be our future work.

REFERENCES
[1] C. Perkins, J. Malinen, R. Wakikawa, E. Belding-Royer, and Y. Sun, “IP

address autoconfiguration for ad hoc networks,” draft-ietf-manet-
autoconf-01.txt, November 2001 (work in progress)

[2] A. Misra, S. Das, A. McAuley, and S. K. Das, “Autoconfiguration,
registration, and mobility management for pervasive computing,” IEEE
Personal Communication System Magazine, Vol. 8, pp. 24-31, August
2001

[3] K. Weniger and M. Zitterbart, “IPv6 autoconfiguration in large scale
mobile ad-hoc networks,” In Proceedings of European Wireless 2002,
Florence, Italy, February 2002

[4] N. Vaidya, “Duplicate address detection in mobile ad hoc networks,”
Proceedings of the 3rd ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MOBIHOC’02), Lausanne,
Switzerland, June 2002

[5] S. Nesargi and R. Prakash, “MANETconf: configuration of hosts in a
mobile ad hoc network,” In Proceedings of the 21st Annual Joint
Conference of IEEE Computer and Communication Societies
(INFOCOM 2002), New York, NY, June 2002

[6] H. Zhou, L. M. Ni, and M. W. Mutka, “Prophet address allocation for
large scale MANETs,” In Proceedings of the 22nd Annual Joint
Conference of IEEE Computer and Communication Societies
(INFOCOM 2003), San Francisco, CA, April 2003

[7] H. Zhou, L. M. Ni, and M. W. Mutka, “Prophet address allocation for
large scale MANETs,” Ad Hoc Networks Journal, Vol. 1, Issue 4, pp
423-434, November 2003

[8] J.-H. Jeong, H.-W. Cha, J.-S. Park, and H.-J. Kim, “Ad hoc IP address
autoconfiguration,” draft-jeong-adhoc-ip-addr-autoconf-00.txt, May
2003 (work in progress)

[9] R. Wakikawa, J. T. Malinen, C. E. Perkins, A. Nilsson, and A. J.
Tuominen, “Global connectivity for IPv6 mobile ad hoc Networks,”
draft-wakikawa-manet-globalv6-02.txt, November 2002 (work in
progress)

[10] E. M. Belding-Royer, Y. Sun, and C. E. Perkins, “Global connectivity
for IPv4 mobile ad hoc networks,” draft-royer-manet-globalv4-00.txt,
November 2001 (work in progress)

[11] G. Pei and M. Gerla, “Mobility management for hierarchical wireless
networks,” Mobile Networks and Application (MONET), Vol. 6, No. 4,
pp 331-337, August 2001

[12] C. Perkins, E. M. Belding-Royer, and S. R. Das, “Ad hoc on-demand
distance vector (AODV) Routing,” Network Working Group RFC 3561,
July 2003

[13] P. Engelstad and G. Egeland, “Name resolution in on-demand MANETS
and external IP networks,” draft-engelstad-manet-name-resoltuion-
00.txt, February 2003 (work in progress)

[14] C. Perkins (editor), “IP mobility support,” Network Working Group
RFC 2002, October 1996

[15] R. Rivest, “MD5 message-digest algorithm,” Network Working Group
RFC 1321, April 1992

[16] J. Touch and B. Parham, “Computation of the Internet checksum via
incremental update,” Network Working Group RFC 1624, May 1994

[17] L. Zhou and Z. J. Haas, “Securing ad hoc networks,” IEEE Network,
Vol. 13, No. 6, pp. 24-30, 1999

[18] S. Čapkun, L. Buttyán, and J. P. Hubaux, “Self-organized public-key
management for ad hoc networks,” In IEEE Transactions on Mobile
Computing, Vol.2, No. 1, January-March 2003

[19] R. Russell and H. Welte, “Linux netfilter hacking HOWTO,”
http://www.netfilter.org/documentation, July 2002

