
Secure Autoconfiguration and Public-key Distribution

for Mobile Ad-hoc Networks

Hongbo Zhou

Dept. of Computer Science

Slippery Rock University

Slippery Rock, PA, USA

hongbo.zhou@sru.edu

Matt W. Mutak

Dept. of Computer Science &

Engineering

Michigan State University

East Lansing, MI, USA

mutka@cse.msu.edu

Lionel M. Ni

Dept. of Computer Science

Hong Kong University of

Science & Technology

Hong Kong SAR, China

ni@cs.ust.hk

Abstract—Security is extremely important for the deployment of

a Mobile Ad-hoc Networks (MANET) due to its openness to

attackers, the absence of an infrastructure, and the lack of

centralized administration. Most research efforts have been

focused on secure routing protocols, the distributed certificate

authority, and key distribution, while a few projects have focused

on secure autoconfiguration. However, the importance of

integration of a secure autoconfiguration and public-key

distribution has been neglected. This paper presents a secure

autoconfiguration and public-key distribution algorithm to

achieve uniqueness of address allocation and secure public-key

distribution when a new node joins a MANET, which provides

the bootstrapping for building a distributed certificate authority

(DCA) in the network where a trust relationship is absent.

Keywords-autoconfiguration; public key distribution; MANET;

security

I. INTRODUCTION

A Mobile Ad-hoc Network (MANET) refers to a wireless

network consisting of mobile nodes where an infrastructure is

absent. In such a network, each node functions as both an end

node and router. It initiates connections to other nodes, and

forwards packets for other nodes at the same time. Due to the

abundance of mobile devices, the speed and convenience of

deployment, and the independence of networking

infrastructure, a MANET has many applications in the

scenarios where it is costly, inconvenient, or impossible to

build an infrastructure, such as search-and-rescue, battlefield,

and “smart transportation”.

Before the deployment of MANETs, there are many issues

that are worth our research effort, among which security is

extremely important. A MANET is vulnerable to all kinds of

attacks due to the following reasons:

(1) In an open system, a malicious node can join and leave

the network arbitrarily;

(2) The wireless link between two nodes is a broadcast

channel, so the communication is vulnerable to eavesdropping;

(3) The assumption underlying the MANET is that all the

nodes (or most nodes) cooperate to function properly. A

malicious node can undermine routing fabrics and other

services passively (by dropping the packets that need to be

forwarded) or actively (by injecting false information into the

network or altering the packets in transit);

(4) It is more difficult to identify the source of a message

in the MANET than in the hardwired network because of the

absence of an infrastructure and the lack of centralized

administration.

Thus, a seemingly easy task may become difficult when

encountered with attacks. One example is autoconfiguration.

Although there have been several autoconfiguration schemes

proposed for uniqueness of address allocation when a new

node joins the MANET ([1] – [8]), none will work properly in

an insecure environment. Therefore, some secure

autoconfiguration algorithms were proposed ([9]-[12]) to

defeat attacks on autoconfiguration.

However, difficulty arises from the integration of secure

autoconfiguration and public-key distribution because of the

dual roles of the IP address, which is used for both routing and

identification. For instance, after node N joins the network, the

association of its IP address and its public key must be

announced at the same time of autoconfiguration; otherwise, a

malicious node (say node M) will know node N’s IP address

and use that address to associate with its own public key for

“man-in-the-middle” attacks.

To solve the problem, we proposed secure

autoconfiguration and public-key distribution, namely the SA-

PKD scheme in this paper. It guarantees the uniqueness of IP

address allocation. At the same time, it distributes the public

key of the new node to all (or most) members in the MANET.

In the ideal situation, all the nodes will receive the binding of

the public key and IP address from the new node. Thus, it can

be used as a temporary certificate authority for the

bootstrapping steps in building a distributed certificate

authority ([13]-[15]), where a trust relationship is absent.

However, it is tolerable for some members to miss the binding

This research was supported in part by the NSF Grants No. OCI-0753362

and CNS-0721441, Hong Kong RGC grant N_HKUST614/07, and HKUST
Nansha Research Fund NRC06/07.EG01.

978-1-4244-5113-5/09/$25.00 ©2009 IEEE

from one new node, because the new member can prove its

ownership of the identity after autoconfiguration in our

scheme.

The paper is organized as follows. Section 2 gives a brief

description about pre-existing secure autoconfiguration

schemes. Our SA-PKD scheme is presented in Section 3.

Section 4 analyzes the attacks on the SA-PKD scheme and

demonstrates its invulnerability, which is supported by the

simulation results in Section 5. Section 6 suggests future work

and concludes the paper.

II. RELATED WORK

This section gives a brief description of four secure

autoconfiguration schemes, three of which have been

examined in [16]. We used the same nominations from [16],

but include their weaknesses from our points of view.

A. Self-authentication scheme

In the self-authentication scheme [9] (which is an

application of Cryptographically Generated Address [17]), a

new node generates its public/private key pair randomly and

then uses the hash value of its public key as the IP address. To

detect address conflict, the new node broadcasts a Duplicate

Address Probe message (whose role is similar to the Duplicate

Address Detection message in [1]) throughout the MANET.

The message contains a timestamp and some signed

information to prevent replay attacks and IP spoofing attacks

from a malicious node.

This method is simple and elegant. To verify a node’s

ownership of the public key, another node merely performs the

same hash function on the public key and compares the hash

value with the IP address. With this scheme, a certificate

authority is not needed. However, such a tight relationship

between the public key and IP address brings the following

problems:

(1) The scheme limits one public/private key pair per node.

However, a node usually needs two pairs of public/private

keys: one pair for signing/verifying, and the other for

encryption/decryption. If a node uses only one key pair, it is

vulnerable to chosen ciphertext attack [18]. Thus, with the

self-authentication scheme, a node is going to have two IP

addresses, and thus some method is necessary to bind these

two IP addresses;

(2) The change of one leads to the change of the other. For

example, if a public/private key pair expires in the middle of

the communication, the IP address needs to change

accordingly. Similarly, if there is an address conflict after two

MANETs merge, one node needs to change both its IP address

and public/private key pair simultaneously;

(3) In the case that a MANET is connected to the Internet

with a gateway, the private address of the mobile node in the

data packets needs to be changed with NAT, thus the

relationship between the IP address and public key does not

hold any more.

B. Challenge-response scheme

The challenge-response scheme [10] is based upon the

buddy system used in [5]. The procedures include two steps:

the first step is authentication, the second is address allocation.

Firstly, a new node uses its MAC address as the temporary

address to send both its MAC address and public key to all its

neighbors with one-hop broadcast, and then expects to receive

a unique nonce encrypted with the pubic key from each of the

neighbors. Once the new node decrypts the nonce, it increases

it by one, signs the message, and sends it back to its neighbor.

After the authentication, the neighbors will record the

mapping between the new node’s public key and MAC

address. The new node then chooses a neighbor randomly as

the address allocator. The allocator divides its address pool

into halves and assigns one half to the new node. It is different

from the scheme in [5] in implementation details that the

nodes do not maintain the actual address pools, instead they

keep only the pointers pointing to the previous and next used

addresses in the pool, which will lessen the complexity in

maintenance of the address range if a node leaves the MANET

abruptly.

The scheme has two problems. Firstly, only one-hop

broadcast is used in the announcement of the public key, and

thus the public key is distributed to only the one-hop

neighbors; secondly, if the allocator is a malicious node, it can

assign a non-disjoint address pool to the new node, which will

lead to address conflicts in the current and subsequent address

allocations.

C. Trust model scheme

There are two secure autoconfiguration schemes based on

a trust model. The one proposed in [11] is based upon the

MANETconf algorithm [6]. It assumes that the number of

malicious nodes in the MANET is small. Each node in the

network maintains a trust value for each of its neighbors. The

neighbor whose trust value is greater than or equal to a

threshold is considered as a trustworthy node. For a remote

destination node, the source node gathers the trust values

along the path between the source and destination to calculate

the destination’s trust value. With the trust model, a new node

chooses only a trustworthy neighbor as a requestor. The

requestor chooses a random IP address for the new node, and

broadcasts a DAD message to detect an address conflict. The

requestor will ignore all the veto messages from non-

trustworthy nodes to prevent DoS attacks. This scheme can be

easily defeated by Sybil attacks [19] in which a malicious

node can forge multiple non-existent identities. They can

conspire to increase each other’s trust value.

The other secure autoconfiguration scheme in [12] is based

upon the buddy system in [5] and a threshold cryptography-

based distributed certificate authority (DCA) in [13]. The

scheme assumes that a DCA is available in the MANET when

a new node joins the network. Before requesting a free IP

address pool, the new node first needs to collect at least k

partial certificates from its one-hop neighbors to form a full

certificate. From then on, all the control messages can be

authenticated. The problems with this scheme are that firstly,

at least k pre-configured DCA server nodes must be present in

the MANET without autoconfiguration; secondly, because

only one-hop communication is utilized by the new node to

apply for partial certificates, the scheme also assumes that the

new node must have at least k DCA server nodes as its direct

neighbors; thirdly, if the DCA is built on-the-fly, it is

vulnerable to Sybil attacks, as we illustrated in [15].

III. SECURE AUTOCONFIGURATION AND

PUBLIC-KEY DISTRIBUTION

The public key of the new node needs to be distributed at

the same time as the secure autoconfiguration. Otherwise, a

malicious node can impersonate the new node in registering or

distributing the public key. This section presents the SA-PKD

scheme that achieves two goals: uniqueness of address

allocation and secure distribution of the public key.

A. Network model

We assume that the MANET is a densely connected

network, in which there are multiple paths between any two

nodes. Other scenarios, such as partitioning of the network, are

studied in subsection III.C.

Ideally, there is a path that contains no malicious node

between the new node and each of the members. However,

even if there is a malicious node on the path, since our scheme

is going to use multi-hop broadcasts to distribute encrypted

and signed information, each node is monitored in forwarding

packets to detect message modification, as illustrated in Fig. 1.

Figure 1. Figure 1. A path between new node N and member A

In Fig. 1, there is a malicious node M between the new

node N and a member, node A. We assume that node M’s

direct upstream neighbor node G is a good node. Because

broadcast is used in data communications, if node M modifies

the control message, node G will receive the modified copy.

Node G can move around or increase its transmitting power

and forward the control message again, trying to reach the

nodes beyond node M. In the end, node A will receive both

authentic and modified control messages. Node A needs to

keep both messages for verification.

If node M drops the control message silently, it seems to

node G that node M leaves the network or moves away. If

there is more than one path between the new node and the

member, the control message can arrive at the member along

other paths. However, if there is only one path, node A will

not receive any message. To solve the problem, we resort to

periodic HELLO messages in routing protocols [20]. To

maintain routing fabrics, the interval of HELLO message

broadcast is quite small (1 second for AODV). If we require

that the control message be repeated several times, and that its

interval be longer than that of HELLO messages, node G will

be aware of the malfunction of node M. Therefore, it can

move around or increase its transmitting power and forward

the control message again.

When there is only one path from the new node to a

member and there are two consecutive malicious nodes along

the path, these two malicious nodes may conspire to tamper

with the control message without being detected by the

upstream node. Since we assume a densely connected network

and nodes are free to move arbitrarily, this is very unlikely to

happen. Moreover, according to the analysis in Section 4, the

attack coordinated by these two malicious nodes cannot

substitute the new node’s public key, which alleviates the

effect of the attack.

B. Procedures

The procedures of SA-PKD scheme include the following

steps:

1) Generation of parameters: We based our SA-PKD

scheme on [1], in which the new node chooses its IP address

randomly. To be more specific, the new node, node N,

generates the following parameters on its own:

(1) A public/private key pair (PbN / PrN);

(2) A random number (RN);

Node N can generate more than one pair of public/private

keys, which is similar to the steps described below. To

generate its tentative IP address, it applies a hash function on

RN (AddrN = Hash(RN)). The hash function can be a default

hash function, or one from a list of hash functions. Here we do

not let the new node choose its random address directly,

because the relationship between RN and AddrN may be

utilized in the proof of the ownership of the IP address after

autoconfiguration.

2) Broadcast of Duplicate Address Detection (DAD)

message: Like the scheme in [1], node N chooses a temporary

random IP address from a special address pool to broadcast a

DAD message several times to detect address conflict. This

temporary address is used only for autoconfiguration. Once

the address generated in step 1) is confirmed to be free, it will

be discarded.

Figure 2. Two new node choose the same temporary address simultaneously

It is tolerable for two or more new nodes to choose the

same temporary address simultaneously because our scheme

uses application-level routing, as illustrated in Fig. 2. In Fig. 2,

nodes N1 and N2 are both new nodes joining the MANET at

the same time. Node A is a neighbor of node N1, and node B is

 N G M A

N1 N2 A B

MANET

a neighbor of node N2. We also assume a direct link between

nodes A and B for easy demonstration.

Suppose that these two new nodes choose the same

temporary address (say x) in broadcasting the DAD message.

In routing protocols, only one routing entry for x is saved in

the routing table. For example, if node A receives the DAD

message from node N1 first and then that from node N2, the

next hop in the routing entry for address x will be node N1 first

and then will be updated to node B. Thus, if node A needs to

send some reply message back to node N1, the message will be

sent to node B and then node N2. In contrast, our SA-PKD

scheme stores routing entries at the application level. Node A

saves two entries for address x: one pointing to node N1, the

other pointing to node B. Both entries will be used to send a

reply message to node N1.Thus, node N1 will not miss any

reply message in the course of secure autoconfiguration.

Although node N2 will also receive the message destined for

node N1, we can always use sequence numbers, timestamps, or

random numbers to differentiate between the reply messages.

In the DAD message, node N puts the following

parameters in addition to a sequence number and a timestamp:

(1) The hash value of its IP address (Hash(AddrN), which

is in fact Hash(Hash(RN)));

(2) The IP address signed with its private key

(SignN(AddrN)).

For the reason of simplicity and readability, when

calculating the parameters, we deliberately omitted the

sequence number, timestamp, and some random numbers

inside the hash function and signing function. For parameter

(1), node N can use a different hash function. If it is not the

default hash function, the new node also needs to notify other

members within the DAD message the specific hash function

used to calculate the hash value of the IP address.

The DAD message is sent with multi-hop broadcasts. As

discussed in Subsection III.A, node N will know its direct

neighbors by means of periodical broadcasts of HELLO

messages, thus node N can monitor the forwarding of the

DAD packet. If node N has only one neighbor that is a

malicious node, and if the malicious node refrains from

forwarding the packet, node N will not receive any forwarded

copy in a limited time frame. Therefore, node N can move

around or increase its transmitting power and try broadcasting

again. If there is no forwarding at all after several trials, it can

infer that it is the first node in the MANET and can perform

self-configuration.

3) Receipt of Duplicate Address Detection (DAD)

message: When a node receives the DAD message, it

calculates the hash value of its own IP address. If it is the same

as the hash value in the DAD message, it generates a veto

message (an NACK message) and sends it back to node N.

The most important parameter in the NACK message is the

source IP address in the IP packet header, in addition to other

parameters such as a sequence number and a timestamp. To

prevent a malicious node on the path from dropping the

NACK message, we resort to application-level routing as well:

every node records the upstream neighbor on receipt of each

copy of the DAD message, and sends NACK message to all

the upstream neighbors.

It is trivial for a malicious node to forge an NACK

message if it can find an IP address that has the same hash

value as the new node generates. For 10.0.0.0/8 in IPv4, if we

use MD5 hash function
1
, with enough storage space (e.g.,

approximately 320MB for MD5), a malicious node can save a

table of all the available IP addresses in this range together

with their corresponding hash values. To solve this problem,

either we use an address range in IPv6, or we allow many hash

functions to choose from. For example, suppose that we have

16 different hash functions that all generate 128-bit results, the

storage requirement increases to approximately 5GB. The

third solution is to use the concept of seed in the encryption of

a password in UNIX: a random number appended to the IP

address in the calculation of hash value in step 2), which

increases the storage requirement exponentially. For example,

with a 2-bit random number, the storage requirement increases

to 4×320 MB; with an 8-bit random number, it increases to

256×320 MB.

However, even if the malicious node can find an IP

address that has the same hash value, the result is not as

damaging as it seems. According to the nature of a hash

function, there will always be more than one number mapped

to the same hash value. Thus, even if the hash value is the

same, the source IP address forged by the malicious node may

not be the same as the IP address generated by node N.

Therefore, the NACK message may be legally ignored as in

step 6) below.

4) Forwarding of DAD message: Each member needs to

forward the DAD message to its neighbors even if it has the

same hash value of IP address and sends back a NACK

message, as illustrated in Fig. 3. In Fig. 3, node N is the new

node, node G is a good node, node M is a malicious node, and

node A is another member. There is a direct link between node

G and node M. Even if Hash(AddrN) = Hash(AddrG), their

addresses may still be different. Thus, node G still needs to

forward the DAD message to other members, because node A

may have the same address as node N. It is the NACK

message from node A that prevents the actual address conflict.

Figure 3. Forwarding of DAD packet

1
 Here we use MD5 hash function for illustration and simulation, which does

not necessarily mean that MD5 should be used in the scheme. A more secure

hash function, such as SHA-2, should be used in practical deployment.

M

N

G

A

Generally speaking, to prevent the same data packet from

being forwarded multiple times by the same node, each node

needs to check the Flooded Packet Identifier (FPI) introduced

in [21] for each copy of the broadcast packets. For IPv4

packets, the FPI includes the source IP address, IP

identification value, and fragment offset value, which are not

enough for the SA-PKD scheme. For example, if node M in

Fig. 3 modifies one parameter in the DAD message, it should

be regarded as a different message. Thus, each node needs to

check both the header and payload and forward the message if

necessary.

5) Forwarding of NACK message: It should be noted that

unlike broadcast of DAD messages, NACK message is

forwarded with unicast. Thus, if a malicious node modifies the

source IP address in the packet header, it will not be directly

detected by the upstream node. Although in step 3), we

suggest that the NACK message be sent through multiple

reverse paths, if there is a malicious node on each path, they

could conspire to replace the source IP address with another

one.

However, the problem is not too serious either. Firstly,

because the possibility that the new node chooses an occupied

address is so low that it is very unlikely to happen, and thus

the NACK message is not so important as the DAD message

in step 2) and the Commit message in step 7); secondly,

suppose that node A sends back a NACK message and that the

NACK message is lost or modified, and thus node N cannot

receive the IP address of node A, node N will keep

broadcasting the DAD message with the same hash value for

several times. Once node A receives the second DAD

message, it infers two possible reasons:

(1) The NACK message is lost or modified;

(2) The NACK message is legally ignored by node N (as

described in the next step).

In either case, better safe than sorry. Node A chooses to

broadcast the NACK message. Thus, the modification of

NACK message can be detected. If node A still receives the

third DAD message with the same hash value, it can infer the

second possibility.

6) Receipt of NACK message: Once node N receives the

NACK message, it compares the source IP address with the

address computed from RN it chooses. If they are the same,

node N chooses another RN and repeats step 2) until there is no

duplicate address or a limited number of retrials have been

accomplished. For the NACK message whose source IP

address is not the same as its own, it is legally ignored.

7) Broadcast of Commit (CMT) message: Node N will

repeat broadcasting DAD messages several times to make sure

none misses the message. Once DAD procedures finish, node

N broadcasts its public key (PbN) in a Commit (CMT)

message throughout the MANET. In addition to its public key,

other parameters, including the sequence number and

timestamp, will also be used. The source IP address of CMT

message is now the hash value of RN, the IP address that it

generates. This address will also be used for all the subsequent

data communications. The temporary address chosen for step

2) is discarded.

On receipt of the CMT message, each node uses the source

IP address and the public key to verify the hash value of the

address and the signature contained in the previous DAD

message, and thus gets the association between the public key

and the IP address of the new node. Each node also forwards

the CMT message to its neighbors, just like the forwarding of

DAD messages. In addition, node N also broadcasts the CMT

message several times.

After SA-PKD scheme finishes, node N will have a unique

IP address, and all the other members have the association of

its public key and its IP address.

C. Other scenarios

If there is a partition in the network, the members in one

partition will be unaware of new nodes’ IP addresses and

public keys in the other partition. Once these two partitions

merge, a malicious node in one former partition can initiate

“man-in-the middle” attack against another node in the other

former partition. Thus, we require the merger of two partitions

be viewed as the merger of two independent MANETs.

To solve this problem, we use the same concept of

Network ID (NID) from other autoconfiguration schemes.

Every MANET has a unique NID, which is updated by the

new node. The new node generates a random number for NID

and puts NID in the CMT messages. On receipt of the CMT

message, each node updates its NID. If two or more nodes join

the MANET or partition at the same time, the NID chosen by

the node with the largest IP address will be adopted by all the

members. The NID is also piggybacked in periodic HELLO

messages to detect merger of two MANETs. If there is no new

node joining any partition, the partitions are going to have the

same NID and no further action is necessary. Otherwise, they

are going to have different NIDs.

If two MANETs merge, we require that the nodes in one

network join the other and perform SA-PKD procedures again.

Although the IP address will be changed, with the measures

from [22], the communication overhead can be minimized.

IV. ANALYSIS OF ATTACKS ON SA-PKD

This section analyzes the attacks focused on SA-PKD

scheme. Other attacks, such as repeated forwarding of

modified DAD or CMT messages to consume computation

and power resources, are not directly related to our scheme,

and thus are skipped in our analysis. We also ignore replay

attacks since we include sequence numbers, timestamps, and

random numbers in the messages.

The DAD message contains two of the most important

parameters: the hash value of the IP address and signed IP

address. Because the random number (RN) and the public key

(PbN) are kept secret in the beginning by node N, none can

determine the IP address and public key from these two

parameters. As a matter of fact, these two parameters seem

like two random bit strings to all the other members.

To attack the SA-PKD scheme, the malicious node M

needs to modify these two parameters in the DAD message.

Node M has two typical choices:

(1) Node M chooses another public/private key pair (PbN’ /

PrN’) and another random number (RN’), replace SignN(AddrN)

with SignN’(AddrN’) and Hash(AddrN) with Hash(AddrN’), as

illustrated in Fig. 4. We denote this modified message as

Substituted Message;

(2) Node M replaces them with two random bit strings.

The modified message is denoted as Random Message.

Figure 4. Attacks on DAD procedures for case 1

Node A will receive and record all the values for

verification on receipt of the CMT message.

In the end, node N broadcasts a CMT message that

contains two important parameters: AddrN and PbN. Now node

M has three typical choices to modify the CMT message:

(1) Replace PbN with PbN’

Node A will receive both public keys and use them to

verify the DAD messages and get the following results:

TABLE I. PROCESSING OF DAD PARAMETERS
FOR CASE 1

CMT

parameters

Previously

received DAD

message

Result

PbN

Authentic Message
(G→A)

Node A recovers AddrN, which is

the same as the source IP address
in CMT message, and hash value

verification succeeds

Substituted

Message (M→A)
Node A cannot recover the address

Random Message

(M→A)
Node A cannot recover the address

PbN’

Authentic Message

(G→A)
Node A cannot recover the address

Substituted

Message (M→A)

Node A recovers AddrN’, which is

not the same as the source IP

address in CMT message, and thus
verification fails

Random Message

(M→A)
Node A cannot recover the address

Node A will get the association of AddrN with PbN from

the authentic messages.

(2) Replace (AddrN, PbN) with (AddrN’, PbN’)

Node A will receive both public keys and IP addresses,

and use them to verify the DAD messages and get the

following results:

TABLE II. PROCESSING OF DAD PARAMETERS
FOR CASE 2

CMT

parameters

Previously

received DAD

message

Result

(AddrN, PbN)

Authentic Message

(G→A)

Node A recovers AddrN, which is

the same as the source IP address

in CMT message, and hash value
verification succeeds

Substituted

Message (M→A)
Node A cannot recover the address

Random Message
(M→A)

Node A cannot recover the address

(AddrN’,

PbN’)

Authentic Message

(G→A)
Node A cannot recover the address

Substituted

Message (M→A)

Node A recovers AddrN’, which is
the same as the source IP address

in CMT message, and hash value

verification succeeds

Random Message

(M→A)
Node A cannot recover the address

Thus, node A will get the association of AddrN with PbN

from the authentic messages, and the association of AddrN’

with PbN’ from the Substituted Message.

(3) Replace any parameter in CMT message with a random

value

If node M replaces the public key with a random bit string,

node A cannot recover AddrN with the modified CMT

message. Similarly, if node M replaces the source IP address

in CMT packet with a random IP address, the hash value of

that random IP address is not equal to the saved copy of the

hash value, and thus verification fails. However, with

authentic DAD and CMT messages, node A can still get the

association of AddrN with PbN.

Because DAD messages go before CMT messages, even if

node M knows node N’s IP address and public key on receipt

of the CMT message, it cannot substitute node N’s

public/private key pair with another key pair used for the DAD

message stored in other nodes. Thus, in any case, node N will

get a unique IP address. At the same time, all the other nodes

will always get the correct association of AddrN with PbN, and

probably the association of AddrN’ with PbN’, which seems like

another new node joining the MAENT.

In the case that node A misses either DAD message or

CMT message, node A cannot get the association of the new

node’s IP address and public key. In the case that two

consecutive malicious nodes conspire to tamper with the DAD

message and CMT message, node A cannot get the association

from the new member either. However, from the analysis

above, the malicious nodes cannot substitute the new node’s

M

N

G

A

SignN(AddrN) Hash(AddrN)

SignN(AddrN) Hash(AddrN)

SignN(AddrN) Hash(AddrN)

SignN’(AddrN’) Hash(AddrN’)

public key. Since the new node still keeps RN secret, the new

node still has the chance to prove its ownership of the IP

address and make announcement of the binding of its IP

address and its public key if necessary.

V. SIMULATION

We implemented the simulation of SA-PKD scheme in ns-

2 (version 2.33) with CMU extension for ad hoc networks

[23]. We ran the simulations in both secure and insecure

environments. In the latter, we increased the percentage of

malicious nodes to examine its invulnerability.

A. Simulation setup

The random waypoint mobility model is adopted in the

simulation, in which all the nodes are constantly moving

inside a square area. The maximum speed is 20 m/s, while the

minimum speed is 5 m/s. The pause time is set to 0 second.

The sizes of the area were adjusted to accommodate different

sizes of MANET from 10 nodes to 50 nodes. Once the

simulation starts, each node joins the MANET every 10

seconds. We let each node broadcast DAD messages and CMT

messages three times in intervals of 3.0 seconds, which can be

adjusted according to different applications.

To calculate hash values, we integrated the implementation

of MD5 algorithm from [24]. For signing and verification

operations, we implemented a simplified RSA algorithm.

Because our scheme relies on multi-hop broadcasts and

application-level routing, the simulation has no preference on

underlying routing protocols.

B. Invulnerability

We let each node print out some debug information during

the simulation, like that in Fig. 5:

(part 1)

Node 0 address:233 142 211 65

Node 0 public key: 25983 (e) 26329 (n)

Node 0 is configured!

Node 1 address:244 195 49 197

Node 1 public key: 11231 (e) 11461 (n)

Node 1 is configured!

…

(part 2)

Begin node 0 key table:

 Node: 1 Address:244 195 49 197 Public

key: 11231 (e), 11461 (n)

 Node: 2 Address:246 164 11 27 Public key:

8735 (e), 8927 (n)

 Node: 3 Address:248 5 48 74 Public key:

4499 (e), 4681 (n)

 Node: 4 Address:71 223 222 220 Public

key: 1991 (e), 2171 (n)

 Node: 5 Address:246 229 195 201 Public

key: 2483 (e), 2641 (n)

 Node: 6 Address:202 217 183 51 Public

key: 2183 (e), 2279 (n)

 Node: 7 Address:181 223 58 217 Public

key: 9359 (e), 9593 (n)

 Node: 8 Address:188 239 154 244 Public

key: 1055 (e), 1157 (n)

 Node: 9 Address:226 11 229 140 Public

key: 13803 (e), 14101 (n)

End node 0 key table:

…

Figure 5. Debug information from a 10–node simulation

in secure environments

Fig. 5 shows the debug information from a 10-node

simulation in secure environments. After each node

successfully configures itself, it prints out its IP address (IPv4

format) and public key (e and n), as node 0 and node 1 in part

1. In the end of a simulation, each node also dumps its key

table that records other nodes’ IP addresses and public keys.

For example, in Fig. 5, node 0’s table contains 9 entries since

there is no malicious node present.

To simplify the work of matching each entry in each

node’s key table in part 2 with the IP address and public key

that are announced by each node in part 1, we wrote a Perl

script to analyze the debug information. The Perl script first

builds a separate key table of IP addresses and public keys

from part 1, and then checks each node’s key table in part 2

for verification.

In insecure environments, we randomly choose nodes as

malicious nodes that modify DAD messages and CMT

messages, as node M in Fig. 3. For example, we choose node 3

as a malicious node in a 50-node simulation, and we get the

debug information as in Fig. 6. In Fig. 6, because node 3 is

malicious, node 0 has only one entry for nodes 1, 2, and 3, but

two entries for all the subsequent nodes: one is authentic, and

the other forged by node 3, such as nodes 4 and 5. However,

node 0 still gets the correct association of IP address and

public key of those nodes.

(part 1)

Node 0 address:233 142 211 65

Node 0 public key: 25983 (e) 26329 (n)

Node 0 is configured!

Node 1 address:97 221 4 239

Node 1 public key: 687 (e) 865 (n)

Node 1 is configured!

Node 2 address:57 76 16 213

Node 2 public key: 3995 (e) 4237 (n)

Node 2 is configured!

Node 3 address:22 194 123 44

Node 3 public key: 1043 (e) 1121 (n)

Node 3 is configured!

Node 4 address:87 238 137 52

Node 4 public key: 4047 (e) 4183 (n)

Node 4 is configured!

Node 5 address:97 137 145 58

Node 5 public key: 3743 (e) 3869 (n)

…

(part 2)

Begin node 0 key table:

 Node: 1 Address:97 221 4 239 Public key:

687 (e), 865 (n)

 Node: 2 Address:57 76 16 213 Public key:

3995 (e), 4237 (n)

 Node: 3 Address:22 194 123 44 Public key:

1043 (e), 1121 (n)

 Node: 4 Address:87 238 137 52 Public key:

4047 (e), 4183 (n)

 Node: 4 Address:147 66 79 237 Public key:

4679 (e), 4867 (n)

 Node: 5 Address:97 137 145 58 Public key:

3743 (e), 3869 (n)

 Node: 5 Address:217 226 164 132 Public

key: 55215 (e), 55687 (n)

…

Figure 6. Debug information from a 50–node simulation

with one malicious node

We increased the percentage of malicious nodes from 2%

to 4%, 8%, and 10%, and the Perl script showed that all the

members in the MANET correctly get the associations of the

new nodes.

VI. CONCLUSION

Based on the studies of secure autoconfiguration schemes

proposed by other researchers, we proposed the SA-PKD

scheme to achieve both uniqueness of IP address allocation

and secure public-key distribution simultaneously for a

densely connected MANET. According to theoretical analysis

and simulation results, it is superior to other known secure

autoconfiguration methods in terms of security and simplicity.

It is especially suitable for an open system where a trust

relationship is absent.

In the paper, we solved the problem that the new node can

distribute its public key to all (or most) members securely in

the MANET. There is still much work ahead. One direction is

to solve the problem that old members can distribute their

public keys to the new node securely. Another direction is to

integrate SA-PKD with our proposed multiple-key

cryptography based distributed certificate authority (MK-

DCA) in [15] where SA-PKD provides the solution to initiate

secure communications to build a DCA.

REFERENCES

[1] C. Perkins, J. Malinen, R. Wakikawa, E. M. Belding-Royer, and Y. Sun,

“IP address autoconfiguration for ad hoc networks,” draft-ietf-manet-
autoconf-01.txt, November 2001 (work in progress)

[2] K. Weniger and M. Zitterbart, “IPv6 autoconfiguration in large scale
mobile ad-hoc networks,” In Proceedings of European Wireless 2002,
Florence, Italy, February 2002

[3] N. Vaidya, “Duplicate address detection in mobile ad hoc networks,” In
Proceedings of the 3rd ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MOBIHOC’02), Lausanne,
Switzerland, June 2002

[4] A. Misra, S. Das, A. McAuley, and S. K. Das, “Autoconfiguration,
registration, and mobility management for pervasive computing,” IEEE
Personal Communication System Magazine, Vol. 8, pp. 24-31, August
2001

[5] M. Mohsin and R. Prakash, “IP address assignment in a mobile ad hoc
network,” In Proceedings of MILCOM 2002, Anaheim, CA, October
2002

[6] S. Nesargi and R. Prakash, “MANETconf: configuration of hosts in a
mobile ad hoc network,” In Proceedings of the 21st Annual Joint
Conference of IEEE Computer and Communication Societies
(INFOCOM 2002), New York, NY, June 2002

[7] H. Zhou, L. M. Ni, and M. W. Mutka, “Prophet address allocation for
large scale MANETs,” In Proceedings of the 22nd Annual Joint
Conference of IEEE Computer and Communication Societies
(INFOCOM 2003), San Francisco, CA, April 2003

[8] H. Zhou, L. M. Ni, and M. W. Mutka, “Prophet address allocation for
large scale MANETs,” Ad Hoc Networks Journal, Vol. 1, Issue 4, pp
423-434, November 2003

[9] P. Wang, D. S. Reeves, and P. Ning, “Secure Address Auto-
configuration for Mobile Ad Hoc Networks,” In Proceedings of the 2nd
Annual International Conference on Mobile and Ubiquitous Systems:
Networking and Services, 2005 (MobiQuitous 2005), pp. 519-521, San
Diego, CA, July 2005

[10] A. Cavalli and J.-M. Orset, “Secure Hosts Autoconfiguration in Mobile
Ad Hoc Networks,” In Proceedings of the 24th International Conference
on Distributed Computing Systems Workshops (ICDCSW 2004),
Tokyo, Japan, March 2004

[11] S. Hu and C. J. Mitchell, “Improving IP Address Autoconfiguration
Security in MANETs Using Trust Modeling,” In Proceedings of the 1st
International Conference on Mobile Ad-hoc and Sensor Networks (MSN
2005), Wuhan, China, December 2005

[12] F. Buiati, R. Puttini, and R. D. Sousa, “A Secure Autoconfiguration
Protocol for MANET Nodes,” In Proceedings of the 3rd International
Conference on Ad-hoc Networks and Wireless (ADHOC-NOW 2004),
Vancouver, Canada, July 2004

[13] L. Zhou and Z. J. Haas, “Securing ad hoc networks,” IEEE Network,
Vol. 13, No. 6, pp. 24-30, 1999

[14] S. Čapkun, L. Buttyán, and J. P. Hubaux, “Self-organized public-key
management for ad hoc networks,” In IEEE Transactions on Mobile
Computing, Vol.2, No. 1, January-March 2003

[15] H. Zhou, M. W. Mutka, and L. M. Ni, “Multiple-key Cryptography-
based Distributed Certificate Authority in Mobile Ad-hoc Networks,” In
Proceedings of IEEE Global Telecommunications Conference
(GLOBECOM 2005), St. Louis, MO, November 2005

[16] M. Taghiloo, J. Taghiloo, and M. Dehghan, “A Survey of Secure
Address Auto-configuration in MANET,” In Proceedings of the 10th
IEEE International Conference on Communication Systems (ICCS
2006), Singapore, pp. 1-5, October 2006

[17] T. Aura, “Cryptographically Generated Addresses (CGA),” Network
Working Group RFC 3972, March 2005

[18] B. Schneier, Applied Cryptography, John Wiley & Sons, Inc. 1996, New
York

[19] J. Couceur, “The sybil attack,” In Proceedings of the 1st Workshop on
Peer-to-Peer Systems (IPTPS’02), Cambridge, MA, March 2002

[20] C. Perkins, E. M. Belding-Royer, and S. R. Das, “Ad hoc on-demand
distance vector (AODV) Routing,” Network Working Group RFC 3561,
July 2003

[21] C. E. Perkins, E. M. Belding-Royer, and S. R. Das, “IP Flooding in Ad
hoc Mobile Networks,” draft-ietf-manet-bcast-00.txt, November 2001

[22] H. Zhou, M. W. Mutka, and L. M. Ni, “IP Address Handoff in the
MANET,” In Proceedings of the 23rd Conference of IEEE
Communication Society (INFOCOM 2004), Hong Kong, China, March
2004

[23] K. Fall and K. Varadhan (editors), The ns Manual - the VINT Project,
http://www.isi.edu/nsnam/ns/ns-documentation.html, June 2008

[24] R. Rivest, “The MD5 Message-Digest Algorithm,” Network Working
Group RFC 1321, April 1992

http://www.isi.edu/nsnam/ns/ns-documentation.html

