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Abstract—Security is extremely important for the deployment of 

a Mobile Ad-hoc Networks (MANET) due to its openness to 

attackers, the absence of an infrastructure, and the lack of 

centralized administration. Most research efforts have been 

focused on secure routing protocols, the distributed certificate 

authority, and key distribution, while a few projects have focused 

on secure autoconfiguration. However, the importance of 

integration of a secure autoconfiguration and public-key 

distribution has been neglected. This paper presents a secure 

autoconfiguration and public-key distribution algorithm to 

achieve uniqueness of address allocation and secure public-key 

distribution when a new node joins a MANET, which provides 

the bootstrapping for building a distributed certificate authority 

(DCA) in the network where a trust relationship is absent. 

Keywords-autoconfiguration; public key distribution; MANET; 

security 

I.  INTRODUCTION 

A Mobile Ad-hoc Network (MANET) refers to a wireless 

network consisting of mobile nodes where an infrastructure is 

absent. In such a network, each node functions as both an end 

node and router. It initiates connections to other nodes, and 

forwards packets for other nodes at the same time. Due to the 

abundance of mobile devices, the speed and convenience of 

deployment, and the independence of networking 

infrastructure, a MANET has many applications in the 

scenarios where it is costly, inconvenient, or impossible to 

build an infrastructure, such as search-and-rescue, battlefield, 

and “smart transportation”. 

Before the deployment of MANETs, there are many issues 

that are worth our research effort, among which security is 

extremely important. A MANET is vulnerable to all kinds of 

attacks due to the following reasons: 

(1) In an open system, a malicious node can join and leave 

the network arbitrarily; 

(2) The wireless link between two nodes is a broadcast 

channel, so the communication is vulnerable to eavesdropping; 

(3) The assumption underlying the MANET is that all the 

nodes (or most nodes) cooperate to function properly. A 

malicious node can undermine routing fabrics and other 

services passively (by dropping the packets that need to be 

forwarded) or actively (by injecting false information into the 

network or altering the packets in transit); 

(4) It is more difficult to identify the source of a message 

in the MANET than in the hardwired network because of the 

absence of an infrastructure and the lack of centralized 

administration. 

Thus, a seemingly easy task may become difficult when 

encountered with attacks. One example is autoconfiguration. 

Although there have been several autoconfiguration schemes 

proposed for uniqueness of address allocation when a new 

node joins the MANET ([1] – [8]), none will work properly in 

an insecure environment. Therefore, some secure 

autoconfiguration algorithms were proposed ([9]-[12]) to 

defeat attacks on autoconfiguration. 

However, difficulty arises from the integration of secure 

autoconfiguration and public-key distribution because of the 

dual roles of the IP address, which is used for both routing and 

identification. For instance, after node N joins the network, the 

association of its IP address and its public key must be 

announced at the same time of autoconfiguration; otherwise, a 

malicious node (say node M) will know node N’s IP address 

and use that address to associate with its own public key for 

“man-in-the-middle” attacks. 

To solve the problem, we proposed secure 

autoconfiguration and public-key distribution, namely the SA-

PKD scheme in this paper. It guarantees the uniqueness of IP 

address allocation. At the same time, it distributes the public 

key of the new node to all (or most) members in the MANET. 

In the ideal situation, all the nodes will receive the binding of 

the public key and IP address from the new node. Thus, it can 

be used as a temporary certificate authority for the 

bootstrapping steps in building a distributed certificate 

authority ([13]-[15]), where a trust relationship is absent. 

However, it is tolerable for some members to miss the binding 
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from one new node, because the new member can prove its 

ownership of the identity after autoconfiguration in our 

scheme. 

The paper is organized as follows. Section 2 gives a brief 

description about pre-existing secure autoconfiguration 

schemes. Our SA-PKD scheme is presented in Section 3. 

Section 4 analyzes the attacks on the SA-PKD scheme and 

demonstrates its invulnerability, which is supported by the 

simulation results in Section 5. Section 6 suggests future work 

and concludes the paper. 

II. RELATED WORK 

This section gives a brief description of four secure 

autoconfiguration schemes, three of which have been 

examined in [16]. We used the same nominations from [16], 

but include their weaknesses from our points of view. 

A. Self-authentication scheme 

In the self-authentication scheme [9] (which is an 

application of Cryptographically Generated Address [17]), a 

new node generates its public/private key pair randomly and 

then uses the hash value of its public key as the IP address. To 

detect address conflict, the new node broadcasts a Duplicate 

Address Probe message (whose role is similar to the Duplicate 

Address Detection message in [1]) throughout the MANET. 

The message contains a timestamp and some signed 

information to prevent replay attacks and IP spoofing attacks 

from a malicious node. 

This method is simple and elegant. To verify a node’s 

ownership of the public key, another node merely performs the 

same hash function on the public key and compares the hash 

value with the IP address. With this scheme, a certificate 

authority is not needed. However, such a tight relationship 

between the public key and IP address brings the following 

problems: 

(1) The scheme limits one public/private key pair per node. 

However, a node usually needs two pairs of public/private 

keys: one pair for signing/verifying, and the other for 

encryption/decryption. If a node uses only one key pair, it is 

vulnerable to chosen ciphertext attack [18]. Thus, with the 

self-authentication scheme, a node is going to have two IP 

addresses, and thus some method is necessary to bind these 

two IP addresses; 

(2) The change of one leads to the change of the other. For 

example, if a public/private key pair expires in the middle of 

the communication, the IP address needs to change 

accordingly. Similarly, if there is an address conflict after two 

MANETs merge, one node needs to change both its IP address 

and public/private key pair simultaneously; 

(3) In the case that a MANET is connected to the Internet 

with a gateway, the private address of the mobile node in the 

data packets needs to be changed with NAT, thus the 

relationship between the IP address and public key does not 

hold any more. 

B. Challenge-response scheme 

The challenge-response scheme [10] is based upon the 

buddy system used in [5]. The procedures include two steps: 

the first step is authentication, the second is address allocation. 

Firstly, a new node uses its MAC address as the temporary 

address to send both its MAC address and public key to all its 

neighbors with one-hop broadcast, and then expects to receive 

a unique nonce encrypted with the pubic key from each of the 

neighbors. Once the new node decrypts the nonce, it increases 

it by one, signs the message, and sends it back to its neighbor. 

After the authentication, the neighbors will record the 

mapping between the new node’s public key and MAC 

address. The new node then chooses a neighbor randomly as 

the address allocator. The allocator divides its address pool 

into halves and assigns one half to the new node. It is different 

from the scheme in [5] in implementation details that the 

nodes do not maintain the actual address pools, instead they 

keep only the pointers pointing to the previous and next used 

addresses in the pool, which will lessen the complexity in 

maintenance of the address range if a node leaves the MANET 

abruptly. 

The scheme has two problems. Firstly, only one-hop 

broadcast is used in the announcement of the public key, and 

thus the public key is distributed to only the one-hop 

neighbors; secondly, if the allocator is a malicious node, it can 

assign a non-disjoint address pool to the new node, which will 

lead to address conflicts in the current and subsequent address 

allocations. 

C. Trust model scheme 

There are two secure autoconfiguration schemes based on 

a trust model. The one proposed in [11] is based upon the 

MANETconf algorithm [6]. It assumes that the number of 

malicious nodes in the MANET is small. Each node in the 

network maintains a trust value for each of its neighbors. The 

neighbor whose trust value is greater than or equal to a 

threshold is considered as a trustworthy node. For a remote 

destination node, the source node gathers the trust values 

along the path between the source and destination to calculate 

the destination’s trust value. With the trust model, a new node 

chooses only a trustworthy neighbor as a requestor. The 

requestor chooses a random IP address for the new node, and 

broadcasts a DAD message to detect an address conflict. The 

requestor will ignore all the veto messages from non-

trustworthy nodes to prevent DoS attacks. This scheme can be 

easily defeated by Sybil attacks [19] in which a malicious 

node can forge multiple non-existent identities. They can 

conspire to increase each other’s trust value. 

The other secure autoconfiguration scheme in [12] is based 

upon the buddy system in [5] and a threshold cryptography-

based distributed certificate authority (DCA) in [13]. The 

scheme assumes that a DCA is available in the MANET when 

a new node joins the network. Before requesting a free IP 

address pool, the new node first needs to collect at least k 

partial certificates from its one-hop neighbors to form a full 

certificate. From then on, all the control messages can be 



authenticated. The problems with this scheme are that firstly, 

at least k pre-configured DCA server nodes must be present in 

the MANET without autoconfiguration; secondly, because 

only one-hop communication is utilized by the new node to 

apply for partial certificates, the scheme also assumes that the 

new node must have at least k DCA server nodes as its direct 

neighbors; thirdly, if the DCA is built on-the-fly, it is 

vulnerable to Sybil attacks, as we illustrated in [15]. 

III. SECURE AUTOCONFIGURATION AND 

PUBLIC-KEY DISTRIBUTION 

The public key of the new node needs to be distributed at 

the same time as the secure autoconfiguration. Otherwise, a 

malicious node can impersonate the new node in registering or 

distributing the public key. This section presents the SA-PKD 

scheme that achieves two goals: uniqueness of address 

allocation and secure distribution of the public key. 

A. Network model 

We assume that the MANET is a densely connected 

network, in which there are multiple paths between any two 

nodes. Other scenarios, such as partitioning of the network, are 

studied in subsection III.C. 

Ideally, there is a path that contains no malicious node 

between the new node and each of the members. However, 

even if there is a malicious node on the path, since our scheme 

is going to use multi-hop broadcasts to distribute encrypted 

and signed information, each node is monitored in forwarding 

packets to detect message modification, as illustrated in Fig. 1. 

 

Figure 1.  Figure 1. A path between new node N and member A 

In Fig. 1, there is a malicious node M between the new 

node N and a member, node A. We assume that node M’s 

direct upstream neighbor node G is a good node. Because 

broadcast is used in data communications, if node M modifies 

the control message, node G will receive the modified copy. 

Node G can move around or increase its transmitting power 

and forward the control message again, trying to reach the 

nodes beyond node M. In the end, node A will receive both 

authentic and modified control messages. Node A needs to 

keep both messages for verification. 

If node M drops the control message silently, it seems to 

node G that node M leaves the network or moves away. If 

there is more than one path between the new node and the 

member, the control message can arrive at the member along 

other paths. However, if there is only one path, node A will 

not receive any message. To solve the problem, we resort to 

periodic HELLO messages in routing protocols [20]. To 

maintain routing fabrics, the interval of HELLO message 

broadcast is quite small (1 second for AODV). If we require 

that the control message be repeated several times, and that its 

interval be longer than that of HELLO messages, node G will 

be aware of the malfunction of node M. Therefore, it can 

move around or increase its transmitting power and forward 

the control message again.  

When there is only one path from the new node to a 

member and there are two consecutive malicious nodes along 

the path, these two malicious nodes may conspire to tamper 

with the control message without being detected by the 

upstream node. Since we assume a densely connected network 

and nodes are free to move arbitrarily, this is very unlikely to 

happen. Moreover, according to the analysis in Section 4, the 

attack coordinated by these two malicious nodes cannot 

substitute the new node’s public key, which alleviates the 

effect of the attack.  

B. Procedures 

The procedures of SA-PKD scheme include the following 

steps: 

1) Generation of parameters: We based our SA-PKD 

scheme on [1], in which the new node chooses its IP address 

randomly. To be more specific, the new node, node N, 

generates the following parameters on its own: 

(1) A public/private key pair (PbN / PrN); 

(2) A random number (RN); 

Node N can generate more than one pair of public/private 

keys, which is similar to the steps described below. To 

generate its tentative IP address, it applies a hash function on 

RN (AddrN = Hash(RN)). The hash function can be a default 

hash function, or one from a list of hash functions. Here we do 

not let the new node choose its random address directly, 

because the relationship between RN and AddrN may be 

utilized in the proof of the ownership of the IP address after 

autoconfiguration. 

2) Broadcast of Duplicate Address Detection (DAD) 

message: Like the scheme in [1], node N chooses a temporary 

random IP address from a special address pool to broadcast a 

DAD message several times to detect address conflict. This 

temporary address is used only for autoconfiguration. Once 

the address generated in step 1) is confirmed to be free, it will 

be discarded. 

 

 

 

 

 

 

 

Figure 2.  Two new node choose the same temporary address simultaneously 

It is tolerable for two or more new nodes to choose the 

same temporary address simultaneously because our scheme 

uses application-level routing, as illustrated in Fig. 2. In Fig. 2, 

nodes N1 and N2 are both new nodes joining the MANET at 

the same time. Node A is a neighbor of node N1, and node B is 
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a neighbor of node N2. We also assume a direct link between 

nodes A and B for easy demonstration. 

Suppose that these two new nodes choose the same 

temporary address (say x) in broadcasting the DAD message. 

In routing protocols, only one routing entry for x is saved in 

the routing table. For example, if node A receives the DAD 

message from node N1 first and then that from node N2, the 

next hop in the routing entry for address x will be node N1 first 

and then will be updated to node B. Thus, if node A needs to 

send some reply message back to node N1, the message will be 

sent to node B and then node N2. In contrast, our SA-PKD 

scheme stores routing entries at the application level. Node A 

saves two entries for address x: one pointing to node N1, the 

other pointing to node B. Both entries will be used to send a 

reply message to node N1.Thus, node N1 will not miss any 

reply message in the course of secure autoconfiguration. 

Although node N2 will also receive the message destined for 

node N1, we can always use sequence numbers, timestamps, or 

random numbers to differentiate between the reply messages. 

In the DAD message, node N puts the following 

parameters in addition to a sequence number and a timestamp: 

(1) The hash value of its IP address (Hash(AddrN), which 

is in fact Hash(Hash(RN))); 

(2) The IP address signed with its private key 

(SignN(AddrN)). 

For the reason of simplicity and readability, when 

calculating the parameters, we deliberately omitted the 

sequence number, timestamp, and some random numbers 

inside the hash function and signing function. For parameter 

(1), node N can use a different hash function. If it is not the 

default hash function, the new node also needs to notify other 

members within the DAD message the specific hash function 

used to calculate the hash value of the IP address. 

The DAD message is sent with multi-hop broadcasts. As 

discussed in Subsection III.A, node N will know its direct 

neighbors by means of periodical broadcasts of HELLO 

messages, thus node N can monitor the forwarding of the 

DAD packet. If node N has only one neighbor that is a 

malicious node, and if the malicious node refrains from 

forwarding the packet, node N will not receive any forwarded 

copy in a limited time frame. Therefore, node N can move 

around or increase its transmitting power and try broadcasting 

again. If there is no forwarding at all after several trials, it can 

infer that it is the first node in the MANET and can perform 

self-configuration. 

3) Receipt of Duplicate Address Detection (DAD) 

message: When a node receives the DAD message, it 

calculates the hash value of its own IP address. If it is the same 

as the hash value in the DAD message, it generates a veto 

message (an NACK message) and sends it back to node N. 

The most important parameter in the NACK message is the 

source IP address in the IP packet header, in addition to other 

parameters such as a sequence number and a timestamp. To 

prevent a malicious node on the path from dropping the 

NACK message, we resort to application-level routing as well: 

every node records the upstream neighbor on receipt of each 

copy of the DAD message, and sends NACK message to all 

the upstream neighbors. 

It is trivial for a malicious node to forge an NACK 

message if it can find an IP address that has the same hash 

value as the new node generates. For 10.0.0.0/8 in IPv4, if we 

use MD5 hash function
1
, with enough storage space (e.g., 

approximately 320MB for MD5), a malicious node can save a 

table of all the available IP addresses in this range together 

with their corresponding hash values. To solve this problem, 

either we use an address range in IPv6, or we allow many hash 

functions to choose from. For example, suppose that we have 

16 different hash functions that all generate 128-bit results, the 

storage requirement increases to approximately 5GB. The 

third solution is to use the concept of seed in the encryption of 

a password in UNIX: a random number appended to the IP 

address in the calculation of hash value in step 2), which 

increases the storage requirement exponentially. For example, 

with a 2-bit random number, the storage requirement increases 

to 4×320 MB; with an 8-bit random number, it increases to 

256×320 MB. 

However, even if the malicious node can find an IP 

address that has the same hash value, the result is not as 

damaging as it seems. According to the nature of a hash 

function, there will always be more than one number mapped 

to the same hash value. Thus, even if the hash value is the 

same, the source IP address forged by the malicious node may 

not be the same as the IP address generated by node N. 

Therefore, the NACK message may be legally ignored as in 

step 6) below. 

4) Forwarding of DAD message: Each member needs to 

forward the DAD message to its neighbors even if it has the 

same hash value of IP address and sends back a NACK 

message, as illustrated in Fig. 3. In Fig. 3, node N is the new 

node, node G is a good node, node M is a malicious node, and 

node A is another member. There is a direct link between node 

G and node M. Even if Hash(AddrN) = Hash(AddrG), their 

addresses may still be different. Thus, node G still needs to 

forward the DAD message to other members, because node A 

may have the same address as node N. It is the NACK 

message from node A that prevents the actual address conflict. 

 

 

 

Figure 3.  Forwarding of DAD packet 

                                                           
1
 Here we use MD5 hash function for illustration and simulation, which does 

not necessarily mean that MD5 should be used in the scheme. A more secure 

hash function, such as SHA-2, should be used in practical deployment. 
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Generally speaking, to prevent the same data packet from 

being forwarded multiple times by the same node, each node 

needs to check the Flooded Packet Identifier (FPI) introduced 

in [21] for each copy of the broadcast packets. For IPv4 

packets, the FPI includes the source IP address, IP 

identification value, and fragment offset value, which are not 

enough for the SA-PKD scheme. For example, if node M in 

Fig. 3 modifies one parameter in the DAD message, it should 

be regarded as a different message. Thus, each node needs to 

check both the header and payload and forward the message if 

necessary. 

5) Forwarding of NACK message: It should be noted that 

unlike broadcast of DAD messages, NACK message is 

forwarded with unicast. Thus, if a malicious node modifies the 

source IP address in the packet header, it will not be directly 

detected by the upstream node. Although in step 3), we 

suggest that the NACK message be sent through multiple 

reverse paths, if there is a malicious node on each path, they 

could conspire to replace the source IP address with another 

one. 

However, the problem is not too serious either. Firstly, 

because the possibility that the new node chooses an occupied 

address is so low that it is very unlikely to happen, and thus 

the NACK message is not so important as the DAD message 

in step 2) and the Commit message in step 7); secondly, 

suppose that node A sends back a NACK message and that the 

NACK message is lost or modified, and thus node N cannot 

receive the IP address of node A, node N will keep 

broadcasting the DAD message with the same hash value for 

several times. Once node A receives the second DAD 

message, it infers two possible reasons: 

(1) The NACK message is lost or modified; 

(2) The NACK message is legally ignored by node N (as 

described in the next step). 

In either case, better safe than sorry. Node A chooses to 

broadcast the NACK message. Thus, the modification of 

NACK message can be detected. If node A still receives the 

third DAD message with the same hash value, it can infer the 

second possibility. 

6) Receipt of NACK message: Once node N receives the 

NACK message, it compares the source IP address with the 

address computed from RN it chooses. If they are the same, 

node N chooses another RN and repeats step 2) until there is no 

duplicate address or a limited number of retrials have been 

accomplished. For the NACK message whose source IP 

address is not the same as its own, it is legally ignored. 

7) Broadcast of Commit (CMT) message: Node N will 

repeat broadcasting DAD messages several times to make sure 

none misses the message. Once DAD procedures finish, node 

N broadcasts its public key (PbN) in a Commit (CMT) 

message throughout the MANET. In addition to its public key, 

other parameters, including the sequence number and  

timestamp, will also be used. The source IP address of CMT 

message is now the hash value of RN, the IP address that it 

generates. This address will also be used for all the subsequent 

data communications. The temporary address chosen for step 

2) is discarded. 

On receipt of the CMT message, each node uses the source 

IP address and the public key to verify the hash value of the 

address and the signature contained in the previous DAD 

message, and thus gets the association between the public key 

and the IP address of the new node. Each node also forwards 

the CMT message to its neighbors, just like the forwarding of 

DAD messages. In addition, node N also broadcasts the CMT 

message several times. 

After SA-PKD scheme finishes, node N will have a unique 

IP address, and all the other members have the association of 

its public key and its IP address. 

C. Other scenarios 

If there is a partition in the network, the members in one 

partition will be unaware of new nodes’ IP addresses and 

public keys in the other partition. Once these two partitions 

merge, a malicious node in one former partition can initiate 

“man-in-the middle” attack against another node in the other 

former partition. Thus, we require the merger of two partitions 

be viewed as the merger of two independent MANETs. 

To solve this problem, we use the same concept of 

Network ID (NID) from other autoconfiguration schemes. 

Every MANET has a unique NID, which is updated by the 

new node. The new node generates a random number for NID 

and puts NID in the CMT messages. On receipt of the CMT 

message, each node updates its NID. If two or more nodes join 

the MANET or partition at the same time, the NID chosen by 

the node with the largest IP address will be adopted by all the 

members. The NID is also piggybacked in periodic HELLO 

messages to detect merger of two MANETs. If there is no new 

node joining any partition, the partitions are going to have the 

same NID and no further action is necessary. Otherwise, they 

are going to have different NIDs. 

If two MANETs merge, we require that the nodes in one 

network join the other and perform SA-PKD procedures again. 

Although the IP address will be changed, with the measures 

from [22], the communication overhead can be minimized. 

IV. ANALYSIS OF ATTACKS ON SA-PKD 

This section analyzes the attacks focused on SA-PKD 

scheme. Other attacks, such as repeated forwarding of 

modified DAD or CMT messages to consume computation 

and power resources, are not directly related to our scheme, 

and thus are skipped in our analysis. We also ignore replay 

attacks since we include sequence numbers, timestamps, and 

random numbers in the messages.  

The DAD message contains two of the most important 

parameters: the hash value of the IP address and signed IP 

address. Because the random number (RN) and the public key 

(PbN) are kept secret in the beginning by node N, none can 



determine the IP address and public key from these two 

parameters. As a matter of fact, these two parameters seem 

like two random bit strings to all the other members. 

To attack the SA-PKD scheme, the malicious node M 

needs to modify these two parameters in the DAD message. 

Node M has two typical choices: 

(1) Node M chooses another public/private key pair (PbN’ / 

PrN’) and another random number (RN’), replace SignN(AddrN) 

with SignN’(AddrN’) and Hash(AddrN) with Hash(AddrN’), as 

illustrated in Fig. 4. We denote this modified message as 

Substituted Message; 

(2) Node M replaces them with two random bit strings. 

The modified message is denoted as Random Message. 

 

 

 

 

 

Figure 4.  Attacks on DAD procedures for case 1 

Node A will receive and record all the values for 

verification on receipt of the CMT message. 

In the end, node N broadcasts a CMT message that 

contains two important parameters: AddrN and PbN. Now node 

M has three typical choices to modify the CMT message: 

(1) Replace PbN with PbN’ 

Node A will receive both public keys and use them to 

verify the DAD messages and get the following results: 

TABLE I.  PROCESSING OF DAD PARAMETERS 
FOR CASE 1 

CMT 

parameters 

Previously 

received DAD 

message 

Result 

PbN 

Authentic Message 
(G→A) 

Node A recovers AddrN, which is 

the same as the source IP address 
in CMT message, and hash value 

verification succeeds 

Substituted 

Message (M→A) 
Node A cannot recover the address 

Random Message 

(M→A) 
Node A cannot recover the address 

PbN’ 

Authentic Message 

(G→A) 
Node A cannot recover the address 

Substituted 

Message (M→A) 

Node A recovers AddrN’, which is 

not the same as the source IP 

address in CMT message, and thus 
verification fails 

Random Message 

(M→A) 
Node A cannot recover the address 

 

Node A will get the association of AddrN with PbN from 

the authentic messages. 

(2) Replace (AddrN, PbN) with (AddrN’, PbN’) 

Node A will receive both public keys and IP addresses, 

and use them to verify the DAD messages and get the 

following results: 

TABLE II.  PROCESSING OF DAD PARAMETERS 
FOR CASE 2 

CMT 

parameters 

Previously 

received DAD 

message 

Result 

(AddrN, PbN) 

Authentic Message 

(G→A) 

Node A recovers AddrN, which is 

the same as the source IP address 

in CMT message, and hash value 
verification succeeds 

Substituted 

Message (M→A) 
Node A cannot recover the address 

Random Message 
(M→A) 

Node A cannot recover the address 

(AddrN’, 

PbN’) 

Authentic Message 

(G→A) 
Node A cannot recover the address 

Substituted 

Message (M→A) 

Node A recovers AddrN’, which is 
the same as the source IP address 

in CMT message, and hash value 

verification succeeds 

Random Message 

(M→A) 
Node A cannot recover the address 

Thus, node A will get the association of AddrN with PbN 

from the authentic messages, and the association of AddrN’ 

with PbN’ from the Substituted Message. 

(3) Replace any parameter in CMT message with a random 

value 

If node M replaces the public key with a random bit string, 

node A cannot recover AddrN with the modified CMT 

message. Similarly, if node M replaces the source IP address 

in CMT packet with a random IP address, the hash value of 

that random IP address is not equal to the saved copy of the 

hash value, and thus verification fails. However, with 

authentic DAD and CMT messages, node A can still get the 

association of AddrN with PbN. 

Because DAD messages go before CMT messages, even if 

node M knows node N’s IP address and public key on receipt 

of the CMT message, it cannot substitute node N’s 

public/private key pair with another key pair used for the DAD 

message stored in other nodes. Thus, in any case, node N will 

get a unique IP address. At the same time, all the other nodes 

will always get the correct association of AddrN with PbN, and 

probably the association of AddrN’ with PbN’, which seems like 

another new node joining the MAENT. 

In the case that node A misses either DAD message or 

CMT message, node A cannot get the association of the new 

node’s IP address and public key. In the case that two 

consecutive malicious nodes conspire to tamper with the DAD 

message and CMT message, node A cannot get the association 

from the new member either. However, from the analysis 

above, the malicious nodes cannot substitute the new node’s 
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public key. Since the new node still keeps RN secret, the new 

node still has the chance to prove its ownership of the IP 

address and make announcement of the binding of its IP 

address and its public key if necessary. 

V. SIMULATION 

We implemented the simulation of SA-PKD scheme in ns-

2 (version 2.33) with CMU extension for ad hoc networks 

[23]. We ran the simulations in both secure and insecure 

environments. In the latter, we increased the percentage of 

malicious nodes to examine its invulnerability. 

A. Simulation setup 

The random waypoint mobility model is adopted in the 

simulation, in which all the nodes are constantly moving 

inside a square area. The maximum speed is 20 m/s, while the 

minimum speed is 5 m/s. The pause time is set to 0 second. 

The sizes of the area were adjusted to accommodate different 

sizes of MANET from 10 nodes to 50 nodes. Once the 

simulation starts, each node joins the MANET every 10 

seconds. We let each node broadcast DAD messages and CMT 

messages three times in intervals of 3.0 seconds, which can be 

adjusted according to different applications. 

To calculate hash values, we integrated the implementation 

of MD5 algorithm from [24]. For signing and verification 

operations, we implemented a simplified RSA algorithm. 

Because our scheme relies on multi-hop broadcasts and 

application-level routing, the simulation has no preference on 

underlying routing protocols.  

B. Invulnerability 

We let each node print out some debug information during 

the simulation, like that in Fig. 5: 

(part 1) 

Node 0 address:233 142 211 65  

Node 0 public key: 25983 (e) 26329 (n) 

Node 0 is configured! 

Node 1 address:244 195 49 197  

Node 1 public key: 11231 (e) 11461 (n) 

Node 1 is configured! 

… 

(part 2) 

Begin node 0 key table: 

 Node: 1 Address:244 195 49 197  Public 

key: 11231 (e), 11461 (n) 

 Node: 2 Address:246 164 11 27  Public key: 

8735 (e), 8927 (n) 

 Node: 3 Address:248 5 48 74  Public key: 

4499 (e), 4681 (n) 

 Node: 4 Address:71 223 222 220  Public 

key: 1991 (e), 2171 (n) 

 Node: 5 Address:246 229 195 201  Public 

key: 2483 (e), 2641 (n) 

 Node: 6 Address:202 217 183 51  Public 

key: 2183 (e), 2279 (n) 

 Node: 7 Address:181 223 58 217  Public 

key: 9359 (e), 9593 (n) 

 Node: 8 Address:188 239 154 244  Public 

key: 1055 (e), 1157 (n) 

 Node: 9 Address:226 11 229 140  Public 

key: 13803 (e), 14101 (n) 

End node 0 key table: 

… 

Figure 5.  Debug information from a 10–node simulation 

in secure environments 

Fig. 5 shows the debug information from a 10-node 

simulation in secure environments. After each node 

successfully configures itself, it prints out its IP address (IPv4 

format) and public key (e and n), as node 0 and node 1 in part 

1. In the end of a simulation, each node also dumps its key 

table that records other nodes’ IP addresses and public keys. 

For example, in Fig. 5, node 0’s table contains 9 entries since 

there is no malicious node present. 

To simplify the work of matching each entry in each 

node’s key table in part 2 with the IP address and public key 

that are announced by each node in part 1, we wrote a Perl 

script to analyze the debug information. The Perl script first 

builds a separate key table of IP addresses and public keys 

from part 1, and then checks each node’s key table in part 2 

for verification. 

In insecure environments, we randomly choose nodes as 

malicious nodes that modify DAD messages and CMT 

messages, as node M in Fig. 3. For example, we choose node 3 

as a malicious node in a 50-node simulation, and we get the 

debug information as in Fig. 6. In Fig. 6, because node 3 is 

malicious, node 0 has only one entry for nodes 1, 2, and 3, but 

two entries for all the subsequent nodes: one is authentic, and 

the other forged by node 3, such as nodes 4 and 5. However, 

node 0 still gets the correct association of IP address and 

public key of those nodes. 

(part 1) 

Node 0 address:233 142 211 65  

Node 0 public key: 25983 (e) 26329 (n) 

Node 0 is configured! 

Node 1 address:97 221 4 239  

Node 1 public key: 687 (e) 865 (n) 

Node 1 is configured! 

Node 2 address:57 76 16 213  

Node 2 public key: 3995 (e) 4237 (n) 

Node 2 is configured! 

Node 3 address:22 194 123 44  

Node 3 public key: 1043 (e) 1121 (n) 

Node 3 is configured! 

Node 4 address:87 238 137 52  

Node 4 public key: 4047 (e) 4183 (n) 

Node 4 is configured! 

Node 5 address:97 137 145 58  

Node 5 public key: 3743 (e) 3869 (n) 

… 

(part 2) 

Begin node 0 key table: 

 Node: 1 Address:97 221 4 239  Public key: 

687 (e), 865 (n) 

 Node: 2 Address:57 76 16 213  Public key: 

3995 (e), 4237 (n) 

 Node: 3 Address:22 194 123 44  Public key: 

1043 (e), 1121 (n) 

 Node: 4 Address:87 238 137 52  Public key: 

4047 (e), 4183 (n) 

 Node: 4 Address:147 66 79 237  Public key: 

4679 (e), 4867 (n) 

 Node: 5 Address:97 137 145 58  Public key: 



3743 (e), 3869 (n) 

 Node: 5 Address:217 226 164 132  Public 

key: 55215 (e), 55687 (n) 

… 

Figure 6.  Debug information from a 50–node simulation 

with one malicious node 

We increased the percentage of malicious nodes from 2% 

to 4%, 8%, and 10%, and the Perl script showed that all the 

members in the MANET correctly get the associations of the 

new nodes. 

VI. CONCLUSION 

Based on the studies of secure autoconfiguration schemes 

proposed by other researchers, we proposed the SA-PKD 

scheme to achieve both uniqueness of IP address allocation 

and secure public-key distribution simultaneously for a 

densely connected MANET. According to theoretical analysis 

and simulation results, it is superior to other known secure 

autoconfiguration methods in terms of security and simplicity. 

It is especially suitable for an open system where a trust 

relationship is absent. 

In the paper, we solved the problem that the new node can 

distribute its public key to all (or most) members securely in 

the MANET. There is still much work ahead. One direction is 

to solve the problem that old members can distribute their 

public keys to the new node securely. Another direction is to 

integrate SA-PKD with our proposed multiple-key 

cryptography based distributed certificate authority (MK-

DCA) in [15] where SA-PKD provides the solution to initiate 

secure communications to build a DCA. 
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